自然资源学报 ›› 2019, Vol. 34 ›› Issue (3): 613-623.doi: 10.31497/zrzyxb.20190314
钱钊晖1,2(), 王绍强1,2(
), 周国逸3, 张雷明1,2, 孟泽3
收稿日期:
2018-07-08
修回日期:
2018-11-22
出版日期:
2019-03-28
发布日期:
2019-03-28
作者简介:
作者简介:钱钊晖(1993- ),男,安徽青阳人,硕士,研究方向为生态遥感及生态模型。E-mail: qianzh.15s@igsnrr.ac.cn
基金资助:
QIAN Zhao-hui1,2(), WANG Shao-qiang1,2(
), ZHOU Guo-yi3, ZHANG Lei-ming1,2, MENG Ze3
Received:
2018-07-08
Revised:
2018-11-22
Online:
2019-03-28
Published:
2019-03-28
摘要:
利用遥感方法可以使用光化学植被指数(PRI)在叶片尺度表征光能利用效率(LUE)的动态变化,但在冠层尺度上,森林植被冠层结构是影响LUE估算精度的关键因素之一。利用2014-2015年中国科学院广东省鼎湖山森林生态试验站自动多角度高光谱观测系统的光谱反射数据,分别计算常绿阔叶林PRI、归一化植被指数(NDVI)、增强型植被指数(EVI)和优化比值植被指数(MSR)。基于通量观测计算的LUE,分析不同表征冠层结构的植被指数对于LUE与PRI拟合精度的影响,并利用不同类型植被指数的组合,构建多元线性回归模型。研究结果表明:(1)亚热带常绿阔叶林冠层结构型植被指数与冠层尺度PRI具有显著的相关性,其中MSR与PRI相关性较为显著(R2=0.40,P<0.01);(2)在植被冠层密度较大、LAI较高(即高NDVI和MSR)时,PRI对于表征LUE的动态变化更具优势;(3)利用NDVI、EVI、MSR和PRI所构建的估算LUE的多元回归模型,能将LUE估算精度提高18.14%,对于冠层结构变化活跃期(1-5月),能将LUE估算精度提高54%。研究认为利用冠层结构参数能够进一步改进PRI对LUE的估算精度,提升遥感精确评估亚热带常绿林生产力的能力。
钱钊晖, 王绍强, 周国逸, 张雷明, 孟泽. 冠层结构对亚热带常绿林光能利用效率估算的影响[J]. 自然资源学报, 2019, 34(3): 613-623.
QIAN Zhao-hui, WANG Shao-qiang, ZHOU Guo-yi, ZHANG Lei-ming, MENG Ze. Assessing canopy structure effect on the estimation of light-use efficiency in a subtropical evergreen forest[J]. JOURNAL OF NATURAL RESOURCES, 2019, 34(3): 613-623.
表2
多元线性回归模型下R2的变化"
lnLUE | 完整观测期 | 冠层结构变化较大时期(1-5月) | P | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R | R2 | ΔR2 | AIC | R | R2 | ΔR2 | AIC | |||
f(PRI) | 0.589 | 0.347 | — | -8382 | 0.643 | 0.413 | — | -2608 | < 0.001 | |
f(PRI, NDVI) | 0.628 | 0.394 | 0.047 | -8846 | 0.743 | 0.552 | 0.139 | -3204 | ||
f(PRI, EVI) | 0.593 | 0.352 | 0.005 | -8433 | 0.651 | 0.424 | 0.013 | -2650 | ||
f(PRI, MSR) | 0.633 | 0.401 | 0.054 | -8930 | 0.765 | 0.586 | 0.173 | -3374 | ||
f(PRI, NDVI, MSR, EVI) | 0.640 | 0.410 | 0.063 | -9037 | 0.797 | 0.636 | 0.223 | -3656 |
表2
多元线性回归模型下R2的变化"
lnLUE | 完整观测期 | 冠层结构变化较大时期(1-5月) | P | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R | R2 | ΔR2 | AIC | R | R2 | ΔR2 | AIC | |||
f(PRI) | 0.589 | 0.347 | — | -8382 | 0.643 | 0.413 | — | -2608 | < 0.001 | |
f(PRI, NDVI) | 0.628 | 0.394 | 0.047 | -8846 | 0.743 | 0.552 | 0.139 | -3204 | ||
f(PRI, EVI) | 0.593 | 0.352 | 0.005 | -8433 | 0.651 | 0.424 | 0.013 | -2650 | ||
f(PRI, MSR) | 0.633 | 0.401 | 0.054 | -8930 | 0.765 | 0.586 | 0.173 | -3374 | ||
f(PRI, NDVI, MSR, EVI) | 0.640 | 0.410 | 0.063 | -9037 | 0.797 | 0.636 | 0.223 | -3656 |
[1] | 朱文泉, 陈云浩, 徐丹, 等. 陆地植被净初级生产力计算模型研究进展. 生态学杂志, 2005, 24(3): 296-300. |
[ZHU W Q, CHEN Y H, XU D, et al.Research progress on the calculation model of net primary productivity of terrestrial vegetation. Journal of Ecology, 2005, 24(3): 296-300.] | |
[2] | GOETZ S J, PRINCE S D.Modelling terrestrial carbon exchange and storage: Evidence and implications of functional convergence in light-use efficiency. Advances in Ecological Research, 1999, 28: 57-92. |
[3] | TURNER D P, URBANSKI S, BREMER D, et al.A cross-biome comparison of daily light use efficiency for gross primary production. Global Change Biology, 2003, 9(3): 383-395. |
[4] | GRACE J, NICHOL C, DISNEY M, et al.Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence. Global Change Biology, 2007, 13(7): 1484-1497. |
[5] | KRAUSE G H, WEIS E.Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 313-349. |
[6] | GAMON J A, PENUELAS J, FIELD C B.A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 1992, 41(1): 35-44. |
[7] | RASCHER U, NICHOL C J, SMALL C, et al.Monitoring spatio-temporal dynamics of photosynthesis with a portable hyperspectral imaging system. Photogrammetric Engineering and Remote Sensing, 2007, 73(1): 45-56. |
[8] | NAKAJI T, KOSUGI Y, TAKANASHI S, et al.Estimation of light-use efficiency through a combinational use of the photochemical reflectance index and vapor pressure deficit in an evergreen tropical rainforest at Pasoh, Peninsular Malaysia. Remote Sensing of Environment, 2014, 150: 82-92. |
[9] | SOUDANI K, HMIMINA G, DUFRÊNE E, et al. Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests. Remote Sensing of Environment, 2014, 144(1): 73-84. |
[10] | 于泉洲, 王绍强, 黄昆, 等. 基于hyperion高光谱数据的温带森林不同冠层结构的光谱特征分析. 光谱学与光谱分析, 2015, 35(7): 1980-1985. |
[YU Q Z, WANG S Q, HUANG K, et al.Spectral characteristics of different canopy structures in temperate forest based on hyperion hyperspectral data. Spectroscopy and Spectral Analysis, 2015, 35(7): 1980-1985.] | |
[YU Q Z, WANG S Q, HUANG K, et al.Spectral characteristics of different canopy structures in temperate forest based on hyperion hyperspectral data. Spectroscopy and Spectral Analysis, 2015, 35(7): 1980-1985.] | |
[11] | TREITZ P M, HOWARTH P J.Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems. Progress in Physical Geography, 1999, 23(3): 359-390. |
TREITZ P M, HOWARTH P J.Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems. Progress in Physical Geography, 1999, 23(3): 359-390. | |
[12] | 吴朝阳, 牛铮. 基于辐射传输模型的高光谱植被指数与叶绿素浓度及叶面积指数的线性关系改进. 植物学报, 2008, 25(6): 714-721. |
吴朝阳, 牛铮. 基于辐射传输模型的高光谱植被指数与叶绿素浓度及叶面积指数的线性关系改进. 植物学报, 2008, 25(6): 714-721. | |
[WU C Y, NIU Z.Linear relationship between hyperspectral vegetation index and chlorophyll concentration and leaf area index improved based on radiation transfer model. Chinese Bulletin of Botany, 2008, 25(6): 714-721.] | |
[WU C Y, NIU Z.Linear relationship between hyperspectral vegetation index and chlorophyll concentration and leaf area index improved based on radiation transfer model. Chinese Bulletin of Botany, 2008, 25(6): 714-721.] | |
[13] | BROGE N H, LEBLANC E.Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 2001, 76(2): 156-172. |
BROGE N H, LEBLANC E.Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 2001, 76(2): 156-172. | |
[14] | PRIVETTE J L, MYNENI R B, KNYAZIKHIN Y, et al.Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari. Remote Sensing of Environment, 2002, 83(1-2): 232-243. |
PRIVETTE J L, MYNENI R B, KNYAZIKHIN Y, et al.Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari. Remote Sensing of Environment, 2002, 83(1-2): 232-243. | |
[15] | 刘洋, 刘荣高, 陈镜明, 等. 叶面积指数遥感反演研究进展与展望. 地球信息科学学报, 2013, 15(5): 734-743. |
刘洋, 刘荣高, 陈镜明, 等. 叶面积指数遥感反演研究进展与展望. 地球信息科学学报, 2013, 15(5): 734-743. | |
[LIU Y, LIU R G, CHEN J M, et al.Current status and perspectives of leaf area index retrieval from optical remote sensing data. Journal of Geo-Information Science, 2013, 15(5): 734-743.] | |
[LIU Y, LIU R G, CHEN J M, et al.Current status and perspectives of leaf area index retrieval from optical remote sensing data. Journal of Geo-Information Science, 2013, 15(5): 734-743.] | |
[16] | 王春林, 于贵瑞, 周国逸, 等. 鼎湖山常绿针阔叶混交林CO2通量估算. 中国科学: 地球科学, 2006, 36(S1): 119-129. |
王春林, 于贵瑞, 周国逸, 等. 鼎湖山常绿针阔叶混交林CO2通量估算. 中国科学: 地球科学, 2006, 36(S1): 119-129. | |
[WANG C L, YU G R, ZHOU G Y, et al.CO2 flux estimation of evergreen needle broad-leaved mixed forest in Dinghu Mountain. Scientia Sinica Terrae, 2006, 36(S1): 119-129.] | |
[WANG C L, YU G R, ZHOU G Y, et al.CO2 flux estimation of evergreen needle broad-leaved mixed forest in Dinghu Mountain. Scientia Sinica Terrae, 2006, 36(S1): 119-129.] | |
[17] | GRECO S, BALDOCCHI D D.Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology, 1996, 2(3): 183-197. |
GRECO S, BALDOCCHI D D.Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology, 1996, 2(3): 183-197. | |
[18] | REICHSTEIN M, FALGE E, BALDOCCHI D, et al.On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 2005, 11(9): 1424-1439. |
REICHSTEIN M, FALGE E, BALDOCCHI D, et al.On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 2005, 11(9): 1424-1439. | |
[19] | LIU L Y, GUAN L L, LIU X J.Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence. Agricultural and Forest Meteorology, 2017, 232: 1-9. |
LIU L Y, GUAN L L, LIU X J.Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence. Agricultural and Forest Meteorology, 2017, 232: 1-9. | |
[20] | 江东, 王乃斌, 杨小唤, 等. 吸收光合有效辐射的时序变化特征及与作物产量的响应关系. 农业系统科学与综合研究, 2002, 18(1): 51-54. |
江东, 王乃斌, 杨小唤, 等. 吸收光合有效辐射的时序变化特征及与作物产量的响应关系. 农业系统科学与综合研究, 2002, 18(1): 51-54. | |
[JIANG D, WANG N B, YANG X H, et al.The time-series variation characteristics of absorption of photosynthetic effective radiation and its response to crop yield. System Sciences and Comprehensive Studies in Agriculture, 2002, 18(1): 51-54.] | |
[JIANG D, WANG N B, YANG X H, et al.The time-series variation characteristics of absorption of photosynthetic effective radiation and its response to crop yield. System Sciences and Comprehensive Studies in Agriculture, 2002, 18(1): 51-54.] | |
[21] | SELLERS P J, TUCKER C J, COLLATZ G J, et al.A global 1-degrees-by-1-degrees NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI. International Journal of Remote Sensing, 1994, 15(17): 3519-3545. |
SELLERS P J, TUCKER C J, COLLATZ G J, et al.A global 1-degrees-by-1-degrees NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI. International Journal of Remote Sensing, 1994, 15(17): 3519-3545. | |
[22] | ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, 1973, NASA SP-351 I, 309-317. |
ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, 1973, NASA SP-351 I, 309-317. | |
[23] | WONG C, GAMON J A.The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers. New Phytologist, 2015, 206(1): 196-208. |
WONG C, GAMON J A.The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers. New Phytologist, 2015, 206(1): 196-208. | |
[24] | WONG C, GAMON J A.Three causes of variation in the Photochemical Reflectance Index (PRI) in evergreen conifers. New Phytologist, 2015, 206(1): 187-195. |
WONG C, GAMON J A.Three causes of variation in the Photochemical Reflectance Index (PRI) in evergreen conifers. New Phytologist, 2015, 206(1): 187-195. | |
[25] | GAMON J, KOVALCHUCK O, WONG C, et al.Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosciences, 2015, 12(13): 4149-4159. |
GAMON J, KOVALCHUCK O, WONG C, et al.Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosciences, 2015, 12(13): 4149-4159. | |
[26] | HALL F G, HILKER T, COOPS N C.Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: I. Model formulation. Remote Sensing of Environment, 2012, 121: 301-308. |
HALL F G, HILKER T, COOPS N C.Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: I. Model formulation. Remote Sensing of Environment, 2012, 121: 301-308. | |
[27] | HILKER T, HALL F G, TUCKER C J, et al.Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: II. model implementation and validation. Remote Sensing of Environment, 2012, 121: 287-300. |
HILKER T, HALL F G, TUCKER C J, et al.Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: II. model implementation and validation. Remote Sensing of Environment, 2012, 121: 287-300. | |
[28] | ZHANG Q, JU W, CHEN J M, et al.Ability of the photochemical reflectance index to track light use efficiency for a sub-tropical planted coniferous forest. Remote Sensing, 2015, 7(12): 16938-16962. |
ZHANG Q, JU W, CHEN J M, et al.Ability of the photochemical reflectance index to track light use efficiency for a sub-tropical planted coniferous forest. Remote Sensing, 2015, 7(12): 16938-16962. | |
[29] | 李焱沐, 王绍强, 钱钊晖, 等. 亚热带针阔混交林光化学植被指数与光能利用效率关系研究. 地理研究, 2017, 36(11): 2239-2250. |
李焱沐, 王绍强, 钱钊晖, 等. 亚热带针阔混交林光化学植被指数与光能利用效率关系研究. 地理研究, 2017, 36(11): 2239-2250. | |
[LI Y M, WANG S Q, QIAN Z H, et al.Investigating the relationship between Photochemical Reflectance Index (PRI) and Light-use Efficiency (LUE) during different seasons in a subtropical needle-leaf and broadleaf mixed forest. Geographical Research, 2017, 36(11): 2239-2250.] | |
[LI Y M, WANG S Q, QIAN Z H, et al.Investigating the relationship between Photochemical Reflectance Index (PRI) and Light-use Efficiency (LUE) during different seasons in a subtropical needle-leaf and broadleaf mixed forest. Geographical Research, 2017, 36(11): 2239-2250.] | |
[30] | HILKER T, COOPS N C, SCHWALM C R, et al.Effects of mutual shading of tree crowns on prediction of photosynthetic light-use efficiency in a coastal douglas-fir forest. Tree Physiology, 2008, 28(6): 825-834. |
HILKER T, COOPS N C, SCHWALM C R, et al.Effects of mutual shading of tree crowns on prediction of photosynthetic light-use efficiency in a coastal douglas-fir forest. Tree Physiology, 2008, 28(6): 825-834. | |
[31] | WU C Y, HUANG W J, YANG Q Y, et al.Improved estimation of light use efficiency by removal of canopy structural effect from the Photochemical Reflectance Index (PRI). Agriculture Ecosystems & Environment, 2015, 199: 333-338. |
WU C Y, HUANG W J, YANG Q Y, et al.Improved estimation of light use efficiency by removal of canopy structural effect from the Photochemical Reflectance Index (PRI). Agriculture Ecosystems & Environment, 2015, 199: 333-338. | |
[32] | 王景旭, 丁丽霞, 程乾. 湿地植被叶面积指数对光化学指数和光能利用率关系的影响: 基于实测数据和prospect-sail模型. 自然资源学报, 2016, 31(3): 514-525. |
王景旭, 丁丽霞, 程乾. 湿地植被叶面积指数对光化学指数和光能利用率关系的影响: 基于实测数据和prospect-sail模型. 自然资源学报, 2016, 31(3): 514-525. | |
[WANG J X, DING L X, CHENG Q.Research on the effect of wetland vegetation lai on the relationship between LUE and PRI by in situ data and PROSPECT-SAIL model. Journal of Natural Resources, 2016, 31(3): 514-525.] | |
[WANG J X, DING L X, CHENG Q.Research on the effect of wetland vegetation lai on the relationship between LUE and PRI by in situ data and PROSPECT-SAIL model. Journal of Natural Resources, 2016, 31(3): 514-525.] | |
[33] | ALONSO L, WITTENBERGHE S V, AMORÓS-LÓPEZ J, et al. Diurnal cycle relationships between passive fluorescence, PRI and NPQ of vegetation in a controlled stress experiment. Remote Sensing, 2017, 9(8): 770. doi: 10. 3390/rs9080770. |
ALONSO L, WITTENBERGHE S V, AMORÓS-LÓPEZ J, et al. Diurnal cycle relationships between passive fluorescence, PRI and NPQ of vegetation in a controlled stress experiment. Remote Sensing, 2017, 9(8): 770. doi: 10. 3390/rs9080770. | |
[34] | DAMM A, ELBERS J, ERLER A, et al.Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of Gross Primary Production (GPP). Global Change Biology, 2010, 16(1): 171-186. |
DAMM A, ELBERS J, ERLER A, et al.Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of Gross Primary Production (GPP). Global Change Biology, 2010, 16(1): 171-186. | |
[35] | ZARCO-TEJADA P J, MORALES A, TESTI L, et al. Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sensing of Environment, 2013, 133: 102-115. |
ZARCO-TEJADA P J, MORALES A, TESTI L, et al. Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sensing of Environment, 2013, 133: 102-115. | |
[36] | ZHANG Q, CHENG Y-B, LYAPUSTIN A I, et al.Estimation of crop Gross Primary Production (GPP): Faparchl versus MOD15A2 FPAR. Remote Sensing of Environment, 2014, 153: 1-6. |
ZHANG Q, CHENG Y-B, LYAPUSTIN A I, et al.Estimation of crop Gross Primary Production (GPP): Faparchl versus MOD15A2 FPAR. Remote Sensing of Environment, 2014, 153: 1-6. |
[1] | 王自奎, 吴普特, 赵西宁, 李正中, 付小军. 作物间套作群体光能截获和利用机理研究进展[J]. 自然资源学报, 2015, 30(6): 1057-1066. |
[2] | 付刚, 沈振西, 张宪洲, 石培礼, 何永涛, 孙维, 武建双, 周宇庭. 利用蒸散比和气温模拟藏北高寒草甸的光能利用效率[J]. 自然资源学报, 2012, 27(3): 450-459. |
[3] | 同小娟, 李俊, 于强. 农田生态系统光能利用效率及其影响因子分析[J]. 自然资源学报, 2009, 24(8): 1393-1401. |
|