自然资源学报 ›› 2018, Vol. 33 ›› Issue (10): 1847-1861.doi: 10.31497/zrzyxb.20171180
• 资源研究方法 • 上一篇
王思梦, 王大钊, 黄昌*
收稿日期:
2017-11-06
修回日期:
2018-01-22
出版日期:
2018-10-20
发布日期:
2018-10-20
通讯作者:
黄昌(1986- ),男,江西宜春人,博士,副教授,研究方向为遥感和GIS应用。E-mail: 作者简介:
王思梦(1993- ),女,陕西西安人,硕士研究生,研究方向为遥感和GIS应用。E-mail:540888928@qq.com
基金资助:
WANG Si-meng, WANG Da-zhao, HUANG Chang
Received:
2017-11-06
Revised:
2018-01-22
Online:
2018-10-20
Published:
2018-10-20
Supported by:
摘要: 论文分别从时间和空间两个角度对GPM卫星降水数据在黑河流域适用性进行评价。以TRMM卫星的降水产品和气象观测站点实测的降水数据作为参考,选用相关系数(R)、均方根误差(RMSE)、相对误差(BIAS)、平均误差(ME)以及标准偏差(SD)多种统计分析指标进行精度评价。结果表明:1)GPM卫星降水数据具有与观测数据较好的一致性以及良好的时间模式;2)GPM卫星降水数据与观测数据之间有着较高的相关系数(R>0.72)以及较低的误差范围 (-0.59%~1.62%);3)相比TRMM,GPM具有较低的均方根误差(RMSE<28.76),尤其是对夏季降水,GPM具有相对更高的相关系数(R>0.76)和更小的相对误差(BIAS<1.14);4)卫星估测降水量的精度与高程具有明显的相关性。总的来说,GPM卫星降水数据在地形复杂的干旱半干旱区域也能够具有较好的精度,能够较为准确地反映干旱半干旱地区的降水分布。
中图分类号:
王思梦, 王大钊, 黄昌. GPM卫星降水数据在黑河流域的适用性评价[J]. 自然资源学报, 2018, 33(10): 1847-1861.
WANG Si-meng, WANG Da-zhao, HUANG Chang. Evaluating the Applicability of GPM Satellite Precipitation Datain Heihe River Basin[J]. JOURNAL OF NATURAL RESOURCES, 2018, 33(10): 1847-1861.
[1] 刘元波, 傅巧妮, 宋平, 等. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1162-1172. [LIU Y B, FU Q N, SONG P, et al.Satellite retrieval of precipitation: An overview. Advances in Earth Sciences, 2011, 26(11): 1162-1172. ] [2] HOU A Y, KAKAR R K, NEECK S, et al.The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 2013, 95(5): 701-722. [3] 邱冰, 姜加虎, 孙占东. 基于MODIS数据的降水估算在博斯腾湖流域的应用[J]. 干旱区研究, 2010, 27(5): 675-679. [QIU B, JIANG J H, SUN Z D.Application of retrieval of precipitation in the Bosten Lake Basin based on MODIS data. Arid Zone Research, 2010, 27(5): 675-679. ] [4] JOYCE R J, JANOWIAK J E, ARKIN P A, et al.CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 2004, 5(3): 287-296. [5] AONASHI K, AWAKA J, HIROSE M, et al.GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation[J]. Journal of the Meteorological Society of Japan, 2009, 87A(3): 119-136. [6] HUFFMAN G J, ADLER R F, BOLVIN D T, et al.The TRMM Multi-Satellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2010, 90(3): 237-247. [7] 黄钰瀚, 张增信, 费明哲, 等. TRMM3B42卫星降水数据在赣江流域径流模拟中的应用[J]. 长江流域资源与环境, 2016, 25(10): 1618-1625. [HUANG Y H, ZHANG Z X, FEI M Z, et al.Hydrological evaluation of the TMPA multi-satellite precipitation estimates over the Ganjiang Basin. Resources and Environment in the Yangtze Basin, 2016, 25(10): 1618-1625. ] [8] 曲伟, 路京选, 李小文. 基于TRMM卫星雷达降雨的黑河流域水文模拟 [R]. 中国水利学会2010年空间信息技术在水利领域应用研讨会, 2010. [QU W, LU J X, LI X W.Study on the Heihe River Basin with SWAT model using TRMM precipitation. Spatial Information Technology Application Seminar in Water Conservancy of China Water Conservancy Society in 2010, 2010. ] [9] 袁慧玲, 孙若辰.淮河上游流域卫星站点融合资料评估及水文模拟应用 [R]. 中国气象学会年会 s7 水文气象、地质灾害气象预报理论与应用技术, 2017. [YUAN H L, SUN R C.Valuation of satellite site fusion data and application of hydrological simulation in upper reaches of Huaihe River Basin. Meteorological Society Annual Meeting s7: Meteorological and Meteorological Forecast Theory and Application of Geological Disasters, 2017. ] [10] 唐国强, 万玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 2015, 30(4): 607-615. [TANG G Q, WAN W, ZENG Z Y, et al.An overview of the Global Precipitation Measurement (GPM) mission and its latest development. Remote Sensing Technology and Application, 2015, 30(4): 607-615. ] [11] 魏志明, 岳官印, 李家, 等. GPM与TRMM降水数据在海河流域的精度对比研究[J]. 水土保持通报, 2017, 37(2): 171-176. [WEI Z M, YUE G Y, LI J, et al.Comparison study on accuracies of precipitation data using GPM and TRMM product in Haihe River Basin. Bulletin of Soil and Water Conservation, 2017, 37(2): 171-176. ] [12] 杨艳芬, 罗毅. 中国西北干旱区TRMM遥感降水探测能力初步评价[J]. 干旱区地理, 2013, 36(3): 371-382. [YANG Y F, LUO Y.Evaluation on detective ability of TRMM remote sensing precipitation in arid region of Northwest China. Arid Land Geography, 2013, 36(3): 371-382. ] [13] 季漩, 罗毅. TRMM降水数据在中天山区域的精度评估分析[J]. 干旱区地理, 2013, 36(2): 253-262. [JI X, LUO Y.Quality assessment of the TRMM precipitation data in Mid Tianshan Mountains. Arid Land Geography, 2013, 36(2): 253-262. ] [14] 赵军, 刘原峰, 朱国锋, 等. 热带测雨卫星数据在黑河流域的精度及应用[J]. 水土保持通报, 2016, 36(3): 309-315. [ZHAO J, LIU Y F, ZHU G F, et al.Accuracy and application of tropical rainfall measuring mission data in Heihe River Basin. Bulletin of Soil and Water Conservation, 2016, 36(3): 303-315. ] [15] 吴雪娇, 杨梅学, 吴洪波, 等. TRMM多卫星降水数据在黑河流域的验证与应用[J]. 冰川冻土, 2013, 35(2): 310-319. [WU X J, YANG M X, WU H B, et al.Verifying and applying the TRMM TMPA in Heihe River Basin. Journal of Glaciology and Geocryology, 2013, 35(2): 310-319. ] [16] 刘小婵, 赵建军, 张洪岩, 等. TRMM降水数据在东北地区的精度验证与应用[J]. 自然资源学报, 2015, 30(6): 1047-1056. [LIU X C, ZHAO J J, ZHANG H Y, et al.Accuracy validation and application of TRMM precipitation data in Northeast China. Journal of Natural Resources, 2015, 30(6): 1047-1056. ] [17] 朱国锋, 蒲焘, 张涛, 等. TRMM降水数据在横断山区的精度[J]. 地理科学, 2013, 33(9): 1125-1131. [ZHU G F, PU T, ZHANG T, et al.The accuracy of TRMM precipitation data in Hengduan Mountainous Region, China. Scientia Geographica Sinica, 2013, 33(9): 1125-1131. ] [18] 张涛, 李宝林, 何元庆, 等. 基于TRMM订正数据的横断山区降水时空分布特征[J]. 自然资源学报, 2015, 30(2): 260-270. [ZHANG T, LI B L, HE Y Q, et al.Spatial and temporal distribution of precipitation based on corrected TRMM data in Hengduan Mountains. Journal of Natural Resources, 2015, 30(2): 260-270. ] [19] 金晓龙, 邵华, 张弛, 等. GPM卫星降水数据在天山山区的适用性分析[J]. 自然资源学报, 2016, 31(12): 2074-2085. [JIN X L, SHAO H, ZHANG C, et al.The applicability evaluation of three satellite products in Tianshan Mountains. Journal of Natural Resources, 2016, 31(12): 2074-2085. ] [20] TANG G Q, ZENG Z Y, LONG D, et al.Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7?[J]. Journal of Hydrometeorology, 2015, 17(1): 121-137. [21] LU X Y, WEI M, TANG G Q, et al.Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China[J]. Environmental Earth Sciences, 2018, 77(5):209. [22] MA Y Z, TANG G Q, LONG D, et al.Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau[J]. Remote Sensing, 2016, 8(7): 569-586. [23] WANG W, LU H, ZHAO T J, et al.Evaluation and comparison of daily rainfall from latest GPM and TRMM products over the Mekong River Basin[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 2540-2549. [24] CHEN F R, LI X.Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China[J]. Remote Sensing, 2016, 8(6): 472-490. [25] KIM K, PARK J M, BAIK J J, et al.Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia[J]. Atmospheric Research, 2016, 187(5): 95-105 [26] ASONG Z E, RAZAVI S, WHEATER H S, et al.Evaluation of integrated multi-satellite retrievals for GPM (IMERG) over southern Canada against ground precipitation observations: A preliminary assessment[J]. Journal of Hydrometeorology, 2017, 18(4): 1033-1050. [27] TAN M L, DUAN Z.Assessment of GPM and TRMM precipitation products over Singapore[J]. Remote Sensing, 2017, 9(7): 720-736. [28] BERIA H, NANDA T, BISHT D S, et al.Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM, an evaluation at a pan-India scale?[J]. Hydrology & Earth System Sciences Discussions, 2017, 21(12): 1-41. [29] YUAN F, ZHANG L M, WIN K W W, et al. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar[J]. Remote Sensing, 2017, 9(3): 302-325. [30] SHARIFI E, STEINACKER R, SAGHAFIAN B.Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results[J]. Remote Sensing, 2016, 8(2): 135-159. [31] 王宁练, 张世彪, 贺建桥, 等. 祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究[J]. 科学通报, 2009, 54(15): 2148-2152. [WANG N L, ZHANG S B, HE J Q, et al.Isotopic tracing of the main forms of surface runoff water resources in the upper reaches of Heihe River in the middle part of Qilian Mountains. Chinese Science Bulletin, 2009, 54(15): 2148-2152. ] [32] 吕洋, 杨胜天, 蔡明勇, 等. TRMM卫星降水数据在雅鲁藏布江流域的适用性分析[J]. 自然资源学报, 2013, 28(8): 1414-1425. [LÜ Y, YANG S T, CAI M Y, et al.The applicability analysis of TRMM precipitation data in the Yarlung Zangbo River Basin. Journal of Natural Resources, 2013, 28(8): 1414-1425. ] [33] 朱会义, 贾绍凤. 降雨信息空间插值的不确定性分析[J]. 地理科学进展, 2004, 23(2): 34-42. [ZHU H Y, JIA S F.Uncertainty in the spatial interpolation of rainfall data. Progress in Geography, 2004, 23(2): 34-42. ] [34] TAYLOR K E.Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7): 7183-7192. [35] 李相虎, 张奇, 邵敏. 基于TRMM数据的鄱阳湖流域降雨时空分布特征及其精度评价[J]. 地理科学进展, 2012, 31(9): 1164-1170. [LI X H, ZHANG Q, SHAO M.Spatio-temporal distribution of precipitation in Poyang Lake Basin based on TRMM data and precision evaluation. Progress in Geography, 2012, 31(9): 1164-1170. ] [36] 蔡晓慧, 邹松兵, 陆志翔, 等. TRMM月降水产品在西北内陆河流域的适应性定量分析[J]. 兰州大学学报(自然科学版), 2013, 39(3): 291-298. [CAI X H, ZHOU S B, LU Z X, et al.Evaluation of TRMM monthly precipitation data over the inland river basins of Northwest China. Journal of Lanzhou University (Natural Sciences), 2013, 39(3): 291-298. ] [37] 李海燕, 王可丽, 江灏, 等. 黑河流域降水的研究进展与展望[J]. 冰川冻土, 2009, 31(2): 150-157. [LI H Y, WANG K L, JIANG H, et al.Study of the precipitation in the Heihe River Basin: Progress and prospect. Journal of Glaciology and Geocryology, 2009, 31(2): 150-157. ] [38] 袁金国, 牛铮, 龙丽民. TRMM卫星和全球降雨观测计划GPM及其应用[J]. 安徽农业科学, 2006, 34(9): 1754-1757. [YUAN J G, NIU Z, LONG L M.TRMM and Global Precipitation Measurement (GPM) and their application. Journal of Anhui Agricultural Sciences, 2006, 34(9): 1754-1757. ] [39] SHEN Y, XIONG A Y, WANG Y, et al.Performance of high-resolution satellite precipitation products over China[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D2): 355-365. |
[1] | 费龙, 邓国荣, 张洪岩, 郭笑怡, 王晓东. 基于降水Z指数的朝鲜降水及旱涝时空特征[J]. 自然资源学报, 2020, 35(12): 3051-3065. |
[2] | 余灏哲, 李丽娟, 李九一. 基于TRMM降尺度和MODIS数据的综合干旱监测模型构建[J]. 自然资源学报, 2020, 35(10): 2553-2568. |
[3] | 李贵芳, 周丁扬, 石敏俊. 西北干旱区作物灌溉技术效率及影响因素[J]. 自然资源学报, 2019, 34(4): 853-866. |
[4] | 孙美平, 张海瑜, 巩宁刚, 闫露霞, 赵琳林. 基于TRMM降水订正数据的祁连山地区最大降水高度带研究[J]. 自然资源学报, 2019, 34(3): 646-657. |
[5] | 范雪薇, 刘海隆. 天山山区TRMM降水数据的空间降尺度研究[J]. 自然资源学报, 2018, 33(3): 478-488. |
[6] | 徐春海, 李忠勤, 王飞腾, 王林. 基于LiDAR、SRTM DEM的祁连山黑河流域十一冰川2000—2012年物质平衡估算[J]. 自然资源学报, 2017, 32(1): 88-100. |
[7] | 金晓龙, 邵华, 张弛, 艳燕. GPM卫星降水数据在天山山区的适用性分析[J]. 自然资源学报, 2016, 31(12): 2074-2085. |
[8] | 刘小婵, 赵建军, 张洪岩, 郭笑怡, 张正祥, 浮媛媛. TRMM降水数据在东北地区的精度验证与应用[J]. 自然资源学报, 2015, 30(6): 1047-1056. |
[9] | 张涛, 李宝林, 何元庆, 杜建括, 牛贺文, 辛惠娟. 基于TRMM订正数据的横断山区降水时空分布特征[J]. 自然资源学报, 2015, 30(2): 260-270. |
[10] | 吕洋, 杨胜天, 蔡明勇, 周秋文, 董国涛. TRMM卫星降水数据在雅鲁藏布江流域的适用性分析[J]. 自然资源学报, 2013, 28(8): 1414-1425. |
[11] | 王晓君, 石敏俊, 王磊. 干旱缺水地区缓解水危机的途径: 水资源需求管理的政策效应[J]. 自然资源学报, 2013, 28(7): 1117-1129. |
[12] | 王超, 赵传燕. TRMM多卫星资料在黑河上游降水时空特征研究中的应用[J]. 自然资源学报, 2013, 28(5): 862-872. |
[13] | 马宁, 王乃昂, 王鹏龙, 孙彦猛, 董春雨. 黑河流域参考蒸散量的时空变化特征及影响因素的定量分析[J]. 自然资源学报, 2012, 27(6): 975-989. |
[14] | 陆桂华, 徐栋, 何海. 黑河流域水汽输送及收支特征[J]. 自然资源学报, 2012, 27(3): 510-521. |
[15] | 陈正华, 麻清源, 王建, 祁元, 李净, 黄春林, 马明国, 杨国靖. 利用CASA模型估算黑河流域净第一性生产力[J]. 自然资源学报, 2008, 23(2): 263-273. |
|