[1] National Research Council (US). Minerals, Critical Minerals, and the US Economy [M]. Washington D C: National Academies Press, 2008. [2] European Commission. Report of the Ad-hoc working group on defining critical raw materials: Critical raw materials for the EU 2014 [EB/OL]. http://ec.europa.eu/enterprise/policies/raw_materials/files/docs/crm_reporton_critical_raw_materials_en.pdf. [3] 日本の産業は. 戦略的な資源の確保します [EB/OL]. http://www.enecho.meti.go.jp/committee/council/basic_problem_committee/028/pdf/28sankou1-2.pdf. [Ministry of Economy, Trade and Industry of Japan.Strategy of Metal resources guarantee. http://www.enecho.meti.go.jp/committee/council/basic_problem_committee/028/pdf/28sankou1-2.pdf. ] [4] 陈其慎, 于汶加, 张艳飞, 等. 中国战略性矿产研究报告 [R]. 北京: 中国地质科学院全球矿产资源战略研究中心, 2014. [CHEN Q S, YU W J, ZHANG Y F, et al.The research report of China’s strategic minerals. Beijing: The Chinese Academy of Geological Sciences Global Mineral Resources Strategy Research Center, 2014. ] [5] GRAEDEL T E, HARPER E M, NASSAR N T, et al.Criticality of metals and metalloids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(14): 4257-4262. [6] GRAEDEL T E, BARR R, CHANDLER C, et al.Methodology of metal criticality determination[J]. Environmental Science & Technology, 2012, 46(2): 1063-1070. [7] 李鹏飞, 杨丹辉, 渠慎宁, 等. 稀有矿产资源的全球供应风险分析——基于战略性新兴产业发展的视角[J]. 世界经济研究, 2015(2): 96-105. [LI P F, YANG D H, QU S N, et al.Analysis on global supply risk of rare minerals: From the perspective of strategic emerging industry development. World Economy Studies, 2015(2): 96-105. ] [8] GEMECHU E D, HELBIG C, SONNEMANN G, et al.Import-based indicator for the geopolitical supply risk of raw materials in life cycle sustainability assessments[J]. Journal of Industrial Ecology, 2015, 20(1): 154-165. [9] GLÖSER-CHAHOUD S, ESPINOZA L T, WALZ R, et al. Taking the Step towards a more dynamic view on raw material criticality: An indicator based analysis for Germany and Japan[J]. Resources, 2016, 5(4): 45. [10] SKIRROW R G, HUSTON D L, MERNAGH T P, et al.Critical commodities for a high-tech world: Australia’s potential to supply global demand [R]. Geoscience Australia, Canberra, 2013. [11] 张新安, 张迎新. 把“三稀”金属等高技术矿产的开发利用提高到战略高度[J]. 国土资源情报, 2011(6): 2-7. [ZHANG X A, ZHANG Y X.Raise the development and utilization of the “three dilute” metal and other high-tech minerals to a strategic height. Land and Resources Information, 2011(6): 2-7. ] [12] 谷树忠, 姚予龙, 沈镭, 等. 资源安全及其基本属性与研究框架[J]. 自然资源学报, 2002, 17(3): 280-285. [GU S Z, YAO Y L, SHEN L, et al.Conceptual framework and research focus of resource security. Journal of Natural Resources, 2002, 17(3): 280-285. ] [13] GRAEDEL T E, ALLWOOD J, BIRAT J P, et al.What do we know about metal recycling rates?[J]. Journal of Industrial Ecology, 2011, 15(3): 355-366. [14] STEEN B.A systematic approach to Environmental Priority Strategies in Product Development (EPS): Version 2000—General system characteristics [R]. Gothenburg: Centre for Environmental Assessment of Products and Material Systems, 1999. [15] HATAYAMA H, TAHARA K.Criticality assessment of metals for Japan’s resource strategy[J]. Materials Transactions, 2015, 56(2): 229-235. [16] NASSAR N T, BARR R, BROWNING M, et al.Criticality of the geological copper family[J]. Environmental Science & Technology, 2012, 46(2): 1071-1078. [17] 张艳飞, 陈其慎, 于汶加, 等. 中国矿产资源重要性二维评价体系构建[J]. 资源科学, 2015, 37(5): 883-890. [ZHANG Y F, CHEN Q S, YU W J, et al.Building a two dimensional coordinate evaluation system of mineral resource importance. Resources Science, 2015, 37(5): 883-890. ] [18] DUCLOS S J, OTTO J P, KONITZER D G.Design in an era of constrained resources[J]. Mechanical Engineering, 2010, 132(9): 36-40. [19] 李鹏飞, 杨丹辉, 渠慎宁, 等. 稀有矿产资源的战略性评估——基于战略性新兴产业发展的视角[J]. 中国工业经济, 2014(7): 44-57. [LI P F, YANG D H, QU S N, et al.A strategic assessment of rare minerals based on the perspective of strategic emerging industries development. China Industrial Economics, 2014(7): 44-57. ] [20] HENCKENS M, DRIESSEN P P J, WORRELL E. How can we adapt to geological scarcity of antimony? Investigation of antimony’s substitutability and of other measures to achieve a sustainable use[J]. Resources, Conservation and Recycling, 2016, 108: 54-62. [21] Czech Geological Survey.Rare Earths—not so rare and perhaps not so critical? [R]. Czech Geological Survey, 2015. [22] 刘存成, 胡畅. 基于MATLAB用蒙特卡洛法评定测量不确定度 [M]. 北京: 中国标准出版社, 2014. [LIU C C, HU C.Measurement of Uncertainty by Monte Carlo Method Based on MATLAB. Beijing: Standards Press of China, 2014. ] [23] GRANDELL L, LEHTILÄ A, KIVINEN M, et al.Role of critical metals in the future markets of clean energy technologies[J]. Renewable Energy, 2016, 95: 53-62. [24] United States Department of Energy. Critical material strategy [R]. Washington: United States Department of Energy, 2010. [25] HABIB K, WENZEL H.Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling[J]. Journal of Cleaner Production, 2014, 84: 348-359. [26] BUCHERT M, SCHÜLER D, BLEHER D, et al. Critical Metals for Future Sustainable Technologies and Their Recycling Potential[M]. UNEP DTIE, Öko-Institut, 2009. [27] ANGERER G.Karlsruhe Fraunhofer-Institut für System-und Innovationsforschung. Rohstoffe für Zukunftstechno logien: Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage[M]. Fraunhofer-IRB-Verlag, 2009. |