[1] 冯仲科, 黄晓东, 刘芳. 森林调查装备与信息化技术发展分析[J]. 农业机械学报, 2015, 46(9): 257-265. [FENG Z K, HUANG X D, LIU F.Forest survey equipment and development of information technology. Transactions of the CSAM, 2015, 46(9): 257-265. ] [2] 李涛, 谭伟, 王六平, 等. 遥感影像判读地类在贵州省林地变更调查中的应用[J]. 贵州农业科学, 2013, 41(9): 172-175. [LI T, TAN W, WANG L P, et al.Application research of remote sensing image interpretation in survey of forest land change in Guizhou. Guizhou Agricultural Sciences, 2013, 41(9): 172-175. ] [3] 庞国锦, 董晓峰, 宋翔, 等. “三北”防护林建设以来河西走廊林地变化的遥感监测[J]. 中国沙漠, 2012, 32(2): 539-544. [PANG G J, DONG X F, SONG X, et al.Remote sensing monitoring of forest land change in Hexi Corridor since contraction of the Three-North Shelterbelt Project. Journal of Desert Research, 2012, 32(2): 539-544. ] [4] 张兴余, 刘勇, 许宝荣, 等. 乌兰布和沙漠高分辨率遥感影像梭梭林解译方法探讨[J]. 遥感技术与应用, 2010, 25(6): 828-835. [ZHANG X Y, LIU Y, XU B R, et al.Discussion on the method of high-resolution remote sensor data interpretation of Haloxylon ammodendron in Ulan Buh Desert. Remote Sensing Technology and Application, 2010, 25(6): 828-835. ] [5] 杨存建, 周其林, 任小兰, 等. 基于多时相MODIS数据的四川省森林植被类型信息提取[J]. 自然资源学报, 2014, 29(3): 507-515. [YANG C J, ZHOU Q L, REN X L, et al.Extracting forest vegetation types from multi-temporal MODIS imagery in Sichuan Province. Journal of Natural Resources, 2014, 29(3): 507-515. ] [6] 张颖, 王越男, 陈利, 等. 基于Landsat-8影像森林植被信息计算机自动提取研究[J]. 中国农学通报, 2014, 30(28): 61-66. [ZHANG Y, WANG Y N, CHEN L, et al.Forest vegetation information computer automatic extraction base on Landsat-8. Chinese Agricultural Science Bulletin, 2014, 30(28): 61-66. ] [7] 雷光斌, 李爱农, 边金虎, 等. 基于阈值法的山区森林常绿、落叶特征遥感自动识别方法——以贡嘎山地区为例[J]. 生态学报, 2014, 34(24): 7210-7221. [LEI G B, LI A N, BIAN J H, et al.A practical method for automatically identifying the evergreen and deciduous characteristic of forests at mountainous areas: A case study in Mt. Gongga Region. Acta Ecologica Sinica, 2014, 34(24): 7210-7221. ] [8] CHEN B Q, LI X P, XIAO X M, et al.Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 50: 117-130. [9] 雷光斌, 李爱农, 谭剑波, 等. 基于多源多时相遥感影像的山地森林分类决策树模型研究[J]. 遥感技术与应用, 2016, 31(1): 31-41. [LEI G B, LI A N, TAN J B, et al.Forest types mapping in mountainous area using multi-source and multi-temporal satellite images and decision tree models. Remote Sensing Technology and Application, 2016, 31(1): 31-41. ] [10] 贾明明, 任春颖, 刘殿伟, 等. 基于环境星与MODIS时序数据的面向对象森林植被分类[J]. 生态学报, 2014, 34(24): 7167-7174. [JIA M M, REN C Y, LIU D W, et al.Object-oriented forest classification based on combination of HJ-1 CCD and MODIS-NDVI data. Acta Ecologica Sinica, 2014, 34(24): 7167-7174. ] [11] 中华人民共和国国家统计局. 中国统计年鉴 [M]. 北京: 中国统计出版社, 2015. [National Bureau of Statistics of the People’s Republic of China. Statistical Yearbook of China. Beijing: China Statistics Press, 2015. ] [12] 陈信文. 蚌埠市农业产业结构优化研究 [D]. 蚌埠: 安徽财经大学, 2015. [CHEN X W.The Optimization Research on the Industry Structure of Agriculture in Bengbu City. Bengbu: Anhui University of Finance & Economics, 2015. ] [13] HADJIMITSIS D G, PAPADAVID G, AGAPIOU A, et al.Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices[J]. Natural Hazards & Earth System Sciences, 2010, 10(1): 89-95. [14] ROUSE J W Jr, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS[C]// FREDEN S C, MERCANTI E P, BECKER M A.Third Earth Resources Technology Satellite-1 Symposium Volume I: Technical Presentations. NASA SP-351. Washington D C: NASA, 1974: 309-317. [15] 陈利. 基于混合像元分解方法的MODIS森林类型识别研究 [D]. 长沙: 中南林业科技大学, 2014. [CHEN L.The Forest Type Identity Research Based on MODIS Unmixing Methods. Changsha: Central South University of Forestry & Technology, 2014. ] [16] 贺鹏, 徐新刚, 张宝雷, 等. 基于多时相GF-1遥感影像的作物分类提取[J]. 河南农业科学, 2016, 45(1): 152-159. [HE P, XU X G, ZHANG B L, et al.Crop classification extraction based on multi-temporal GF-1 remote sensing image. Journal of Henan Agricultural Sciences, 2016, 45(1): 152-159. ] [17] 竞霞, 王锦地, 王纪华, 等. 基于分区和多时相遥感数据的山区植被分类研究[J]. 遥感技术与应用, 2008, 23(4): 394-397. [JING X, WANG J D, WANG J H, et al.Classifying forest vegetation using sub-region classification based on multi-temporal remote sensing images. Remote Sensing Technology and Application, 2008, 23(4): 394-397. ] [18] 徐伟燕, 孙睿, 金志凤. 基于资源三号卫星影像的茶树种植区提取[J]. 农业工程学报, 2016, 32(S1): 161-168. [XU W Y, SUN R, JIN Z F.Extracting tea plantations based on ZY-3 satellite data. Transactions of the CSAE, 2016, 32(S1): 161-168. ] [19] COBURN C A, ROBERTS A C B. A multiscale texture analysis procedure for improved forest stand classification[J]. International Journal of Remote Sensing, 2004, 25(20): 4287-4308. [20] 陈文倩, 丁建丽, 王娇, 等. 基于高分一号影像的土地覆被分类方法初探[J]. 干旱区地理, 2016, 39(1): 182-189. [CHEN W Q, DING J L, WANG J, et al.Classification method of land cover based on GF-1 image. Arid Land Geography, 2016, 39(1): 182-189. ] [21] CARVALHO L M T D, CLEVERS J G P W, SKIDMORE A K, et al. Selection of imagery data and classifiers for mapping Brazilian semideciduous Atlantic forests[J]. International Journal of Applied Earth Observation & Geoinformation, 2004, 5(3): 173-186. [22] 刘晓娜, 封志明, 姜鲁光, 等. 西双版纳橡胶林地的遥感识别与数字制图[J]. 资源科学, 2012, 34(9): 1769-1780. [LIU X N, FENG Z M, JIANG L G, et al.Rubber plantations in Xishuangbanna: Remote sensing identification and digital mapping. Resources Science, 2012, 34(9): 1769-1780. ] [23] LI H Z, ZHANG X L, WANG S H, et al.Scale transformation of forest vegetation coverage based on Landsat TM and SPOT 5 remote sense images data[J]. Advance Journal of Food Science & Technology, 2015, 9(1): 19-27. |