[1] IPCC (Intergovernmental Panel on Climate Change). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. New York: Cambridge University Press, 2013. [2] NI J, ZHANG X S. Climate variability, ecological gradient and the Northeast China Transect (NECT) [J]. Journal of Arid Environments, 2000, 46(3): 313-325. [3] KNAPP A K, FAY P A, BLAIR J M, et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland [J]. Science, 2002, 298(5601): 2202-2205. [4] YAHDJIAN L, SALA O E. Vegetation structure constrains primary production response to water availability in the Patagonian steppe [J]. Ecology, 2006, 87(4): 952-962. [5] SALA O E, LAUENROTH W K. Small rainfall events: An ecological role in semiarid regions [J]. Oecologia, 1982, 53(3): 301-304. [6] ZHU J X, HE N P, WANG Q F, et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems [J]. Science of the Total Environment, 2015, 511(4): 777-785. [7] STANDFORD G, SMITH S J. Nitrogen mineralization potential of soils [J]. Soil Science Society of America Journal, 1972, 36(3): 465-472. [8] 陈敏玲, 张兵伟, 任婷婷, 等. 内蒙古半干旱草原土壤水分对降水格局变化的响应 [J]. 植物生态学报, 2016, 40(7): 658-668. [CHEN M L, ZHANG B W, REN T T, et al. Responses of soil moisture to precipitation pattern change in semiarid grasslands in Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(7): 658-668. ] [9] 贺云龙, 齐玉春, 董云社, 等. 干湿交替下草地生态系统土壤呼吸变化的微生物响应机制研究进展 [J]. 应用生态学报, 2014, 25(11): 3373-3380. [HE Y L, QI Y C, DONG Y S, et al. Microbial response mechanism for drying and rewetting effect on soil respiration in grassland ecosystem: A review. Chinese Journal of Applied Ecology, 2014, 25(11): 3373-3380. ] [10] LIU Y S, PAN Q M, ZHENG S X, et al. Intra-seasonal precipitation amount and pattern differentially affect primary production of two dominant species of Inner Mongolia grassland [J]. Acta Oecologica, 2012, 44(10): 2-10. [11] HEISLER-WHITE J L, BLAIR J M, KELLY E F, et al. Contingent productivity responses to more extreme rainfall regimes across a grassland biome [J]. Global Change Biology, 2009, 15(12): 2894-2904. [12] BAI Y F, WU J G, CLARK C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands [J]. Global Change Biology, 2010, 16(1): 358-372. [13] 游成铭, 胡中民, 郭群, 等. 氮添加对内蒙古温带典型草原生态系统碳交换的影响 [J]. 生态学报, 2016, 36(8): 2142-2150. [YOU C M, HU Z M, GUO Q, et al. Effects of nitrogen addition on carbon exchange in a typical steppe in Inner Mongolia. Acta Ecologica Sinica, 2016, 36(8): 2142-2150. ] [14] TATE R L. Soil Microbiology [M]. New York: John Wiley & Sons, 2000. [15] 刘碧荣, 王常慧, 张丽华, 等. 氮素添加和刈割对内蒙古弃耕草地土壤氮矿化的影响 [J]. 生态学报, 2015, 35(19): 6335-6343. [LIU B R, WANG C H, ZHANG L H, et al. Effect of nitrogen addition and mowing on soil nitrogen mineralization in abandoned grasslands in Inner Mongolia. Acta Ecologica Sinica, 2015, 35(19): 6335-6343. ] [16] 代景忠, 卫智军, 何念鹏, 等. 封育对羊草草地土壤碳矿化激发效应和温度敏感性的影响 [J]. 植物生态学报, 2012, 36(12): 1226-1236. [DAI J Z, WEI Z J, HE N P, et al. Effect of grazing enclosure on the priming effect and temperature sensitivity of soil C mineralization in Leymus chinensis grasslands, Inner Mongolia, China. Chinese Journal of Plant Ecology, 2012, 36(12): 1226-1236. ] [17] 王常慧, 邢雪荣, 韩兴国. 温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响 [J]. 生态学报, 2004, 24(11): 2472-2476. [WANG C H, XING X R, HAN X G. The effects of temperature and moisture on the soil net mineralization in an Aneulolepidium chinensis grassland, Inner Mongolia, China. Acta Ecologica Sinica, 2004, 24(11): 2472-2476. ] [18] 杨勇, 白永飞, 王明玖, 等. 放牧强度对内蒙古典型草原土壤氮矿化潜力的影响 [J]. 内蒙古农业大学学报, 2010, 31(3): 136-140. [YANG Y, BAI Y F, WANG M J, et al. The effect of grazing intensity on soil nitrogen mineralization potential in typical steppe of Inner Mongolia. Journal of Inner Mongolia Agricultural University, 2010, 31(3): 136-140. ] [19] BAI Y F, WU J G, XING Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau [J]. Ecology, 2008, 89(8): 2140-2153. [20] 孙艳玲, 郭鹏, 延晓冬, 等. 内蒙古植被覆盖变化及其与气候、人类活动的关系 [J]. 自然资源学报, 2010, 25(3): 407-414. [SUN Y L, GUO P, YAN X D, et al. Dynamics of vegetation cover and its relationship with climate change and human. Journal of Natural Resources, 2010, 25(3): 407-414. ] [21] ZAK D R, TILMAN D, PARMENTER R R, et al. Plant production and soil microorganism in late-successional ecosystems: A continental-scale study [J]. Ecology, 1994, 75(8): 2333-2347. [22] LIU W X, ZHANG Z, WAN S Q. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland [J]. Global Change Biology, 2009, 15(1): 184-195. [23] ZHANG X L, WANG Q B, GILLIAM F S, et al. Effect of nitrogen fertilization on net nitrogen mineralization in a grassland soil, northern China [J]. Grass and Forage Science, 2012, 67(2): 219-230. [24] KUZYAKOV Y, FRIEDEL J K, STAHR K. Review of mechanisms and quantification of priming effects [J]. Soil Biology Biochemistry, 2000, 32(11/12): 1485-1498. [25] ZHANG Q S, ZAK J C. Effects of water and nitrogen amendment on soil microbial biomass and fine root production in a semi-arid environment in West Texas [J]. Soil Biology and Biochemistry, 1998, 30(1): 39-45. [26] HAO Y B, KANG X, CUI X Y, et al. Verification of a threshold concept of ecologically effective precipitation pulse: From plant individuals to ecosystem [J]. Ecological Informatics, 2012, 12(11): 23-30. [27] HEISLER-WHITE J L, KNAPP A K, KELLY E F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland [J]. Oecologia, 2008, 158(1): 129-140. [28] GUO Q, LI S G, HU Z M, et al. Responses of gross primary productivity to different sizes of precipitation events in a temperate grassland ecosystem in Inner Mongolia, China [J]. Journal of Arid Land, 2015, 8(1): 36-46. |