自然资源学报 ›› 2017, Vol. 32 ›› Issue (11): 1844-1856.doi: 10.11849/zrzyxb.20160983
朱士华1, 2, 3, 艳燕2, 3, 邵华2, *, 李超凡2, 4
收稿日期:
2016-09-14
修回日期:
2016-11-19
出版日期:
2017-11-20
发布日期:
2017-11-20
通讯作者:
邵华(1969- ),女,副研究员,研究方向为生态学。E-mail:shaohua@ms.xjb.ac.cn
作者简介:
朱士华(1989- ),男,博士,研究方向为生态模型、全球变化生态学。E-mail:zshcare@ foxmail.com
基金资助:
ZHU Shi-hua1, 2, 3, YAN Yan2, 3, SHAO Hua2, LI Chao-fan2, 4
Received:
2016-09-14
Revised:
2016-11-19
Online:
2017-11-20
Published:
2017-11-20
Supported by:
摘要: 中亚干旱区分布着世界80%以上的温带荒漠,受气候变化影响显著。论文首先收集实验观测数据验证了干旱区生态系统模型(AEM),然后运用AEM开展数值模拟实验量化研究了1980—2014年中亚净初级生产力(NPP)的时空格局,评估了不同环境因子(降水、温度、CO2)的相对贡献率及其交互效应。结果表明:过去35 a中亚干旱区年均NPP总量为1 125±129 Tg C(1 T=1012)或218±25 g C/m2。哈萨克斯坦北部地区年NPP值较高(349±39 g C/m2),而南疆地区年NPP值较低(123±45 g C/m2)。1980—2014年间,中亚NPP总体呈减少趋势 [-0.71 g C/(m2·a)],南疆极端干旱区的NPP降低最为显著 [-2.05 g C/(m2·a)]。相较于1980—1984年NPP均值,在1985—2014年中亚区域NPP总体降低了118 Tg(-10%)。其中CO2施肥效应促进NPP增加了99.7 Tg (+8%),气温升高的正效应促进NPP增加了35.4 Tg(+2%),而降水减少导致NPP降低了221 Tg(-18%)。研究区内9%的地区的NPP主要控制因子为温度,主要分布在天山和哈萨克斯坦北部等高纬高寒地区。降水主控区面积占整个研究区的69%,主要分布在荒漠平原特别是南疆等植被受水分限制的区域。CO2主控区占研究区面积的20%,主要分布在天山中山带森林区和低海拔地区等水热条件好的区域。研究表明新疆南部地区是中亚的关键生态脆弱区,其生态安全面临着气候变化的挑战,但21世纪的升温不大可能因刺激自养呼吸而对中亚区域NPP造成显著影响。
中图分类号:
朱士华, 艳燕, 邵华, 李超凡. 1980—2014年中亚地区植被净初级生产力对气候和CO2变化的响应[J]. 自然资源学报, 2017, 32(11): 1844-1856.
ZHU Shi-hua, YAN Yan, SHAO Hua, LI Chao-fan. The Responses of the Net Primary Productivity of the Dryland Ecosystems in Central Asia to the CO2 and Climate Changes during the Past 35 Years[J]. JOURNAL OF NATURAL RESOURCES, 2017, 32(11): 1844-1856.
[1] 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异 [J]. 中国科学: 地球科学, 2011, 41(11): 1647-1657. [CHEN F H, HUANG W, JIN L Y, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Science China Earth Sciences, 2011, 41(11): 1647-1657. ] [2] LIOUBIMTSEVA E, COLE R, ADAMS J M, et al. Impacts of climate and land-cover changes in arid lands of Central Asia [J]. Journal of Arid Environments, 2005, 62(2): 285-308. [3] PUIGDEFÁBREGAS J. Ecological impacts of global change on drylands and their implications for desertification [J]. Land Degradation & Development, 1998, 9(5): 393-406 [4] HU Z Y, ZHANG C, HU Q, et al. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets [J]. Journal of Climate, 2014, 27(3): 1143-1167. [5] CHEN X, ZHANG C, LUO G P. Modeling Dryland Ecosystems' Response to Global Change in Central Asia [M]. Beijing, China: China Meteorological Press, 2014: 174. [6] FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components [J]. Science, 1998, 281(5374): 237-240. [7] 李超凡, 罗格平, 李均力, 等. 近20 a中亚净初级生产力与实际蒸散发特征分析 [J]. 干旱区地理, 2012, 35(6): 919-927. [LI C F, LUO G P, LI J L, et al. Net primary productivity and actual evapotranspiration of Central Asia in recent 20 years. Arid Land Geography, 2012, 35(6): 919-927. ] [8] 张建财, 张丽, 郑艺, 等. 基于LPJ模型的中亚地区植被净初级生产力与蒸散模拟 [J]. 草业科学, 2015, 32(11): 1721-1729. [ZHANG J C, ZHANG L, ZHENG Y, et al. Simulation of vegetation net primary productivity and evapotranspiration based on LPJ model in Central Asia. Pratacultural Science, 2015, 32(11): 1721-1729. ] [9] ZHANG C, LI C F, LUO G P, et al. Modeling plant structure and its impacts on carbon and water cycles of the Central Asian arid ecosystem in the context of climate change [J]. Ecological Modelling, 2013, 267(7): 158-179. [10] ZHANG C, LI C F, CHEN X, et al. A spatial-explicit dynamic vegetation model that couples carbon, water, and nitrogen processes for arid and semi-arid ecosystems [J]. Journal of Arid Land, 2013, 5(1): 102-117. [11] LI C F, ZHANG C, LUO G P, et al. Carbon stock and its responses to climate change in Central Asia [J]. Global Change Biology, 2015, 21(5): 1951-1967. [12] CHEN F H, WANG J S, JIN L Y, et al. Rapid warming in mid-latitude Central Asia for the past 100 years [J]. Frontiers of Earth Science in China, 2009, 3(1): 42-50. [13] WALKER R F, GEISINGER D R, JOHNSON D W, et al. Elevated atmospheric CO 2 and soil N fertility effects on growth, mycorrhizal colonization, and xylem water potential of juvenile ponderosa pine in a field soil [J]. Plant and Soil, 1997, 195(1): 25-36. [14] THOMAS R B, LEWIS J D, STRAIN B R. Effects of leaf nutrient status on photosynthetic capacity in loblolly pine ( Pinus taeda L.) seedlings grown in elevated atmospheric CO 2 [J]. Tree Physiology, 1994, 14(7/9): 947-960. [15] KAUSHAL P, GUEHL J M, AUSSENAC G. Differential growth response to atmospheric carbon dioxide enrichment in seedlings of Cedrus atlantica and Pinus nigra ssp. Laricio var. Corsicana [J]. Canadian Journal of Forest Research, 1989, 19(11): 1351-1358. [16] 杨兵, 王进闯, 张远彬. 长期模拟增温对岷江冷杉幼苗生长与生物量分配的影响 [J]. 生态学报, 2010, 30(21): 5994-6000. [YANG B, WANG J C, ZHANG Y B. Effect of long-term warming on growth and biomass allocation of Abies faxoniana seedings. Acta Ecologica Sinica, 2010, 30(21): 5994-6000. ] [17] BAZZAZ F A, COLEMAN J S, MORSE S R. Growth responses of seven major co-occurring tree species of the northeastern United States to elevated CO 2 [J]. Canadian Journal of Forest Research, 1990, 20(9): 1479-1484. [18] CURTIS P S, TEERI J A. Seasonal responses of leaf gas exchange to elevated carbon dioxide in Populus grandidentata [J]. Canadian Journal of Forest Research, 1992, 22(9): 1320-1325. [19] ZAK D, PREGITZER K, CURTIS P, et al. Elevated atmospheric CO 2 and feedback between carbon and nitrogen cycles [J]. Plant and Soil, 1993, 151(1): 105-117. [20] 闫慧, 吴茜, 丁佳, 等. 不同降水及氮添加对浙江古田山4种树木幼苗光合生理生态特征与生物量的影响 [J]. 生态学报, 2013, 33(14): 4226-4236. [YAN H, WU Q, DING J, et al. Effects of precipitation and nitrogen addition on photosynthetically eco-physiological characteristics and biomass of four tree seedlings in Gutian Mountain, Zhejiang Province, China. Acta Ecologica Sinica, 2013, 33(14): 4226-4236. ] [21] SMITH S D, STRAIN B R, SHARKEY T D. Effects of CO 2 enrichment on four great basin grasses [J]. Functional Ecology, 1987, 1(2): 139-143. [22] HUNT R, HAND D W, HANNAH M A, et al. Response to CO 2 enrichment in 27 herbaceous species [J]. Functional Ecology, 1991, 5(3): 410-421. [23] 高素华, 郭建平, 周广胜, 等. 高CO 2 条件下贝加尔针毛对土壤干旱胁迫响应的试验研究 [J]. 应用气象学报, 2003, 14(2): 252-256. [GAO S H, GUO J P, ZHOU G S, et al. Response of Stipa baicalensis to soil drought stress at high CO 2 concentration. Journal of Applied Meteorological Science, 2003, 14(2): 252-256. ] [24] 周华坤, 周兴民, 赵新全. 模拟增温效应对矮嵩草草甸影响的初步研究 [J]. 植物生态学报, 2000, 24(5): 547-553. [ZHOU H K, ZHOU X M, ZHAO X Q. A preliminary study of the influence of simulated green house effect on a Kobresia humilis meadow. Acta Phytoecologica Sinica, 2000, 24(5): 547-553. ] [25] 高嵩. 增温和氮素添加对松嫩草原羊草群落结构和功能的影响 [D]. 长春: 东北师范大学, 2012. [GAO S. Effect of Warming and Nitrogen Addition on Structure and Function of Leymus chinensis Community in Songnen Grassland. Changchun: Northeast Normal University, 2012. ] [26] 李英年, 赵亮, 赵新全, 等. 5年模拟增温后矮嵩草草甸群落结构及生产量的变化 [J]. 草地学报, 2004, 12(3): 236-239. [LI Y N, ZHAO L, ZHAO X Q, et al. Effect of a 5-years mimic temperature increase to the structure and productivity of Kobresia humilis meadow. Acta Agrestia Sinica, 2004, 12(3): 236-239. ] [27] 李娜, 王根绪, 杨燕, 等. 短期增温对青藏高原高寒草甸植物群落结构和生物量的影响 [J]. 生态学报, 2011, 31(4): 895-905. [LI N, WANG G X, YANG Y, et al. Short-term effects of temperature enhancement on community structure and biomass of alpine meadow in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2011, 31(4): 895-905. ] [28] 王长庭, 王启基, 沈振西, 等. 模拟降水对高寒矮嵩草草甸群落影响的初步研究 [J]. 草业学报, 2003, 12(2): 25-29. [WANG C T, WANG Q J, SHEN Z X, et al. A preliminary study of the effect of simulated precipitation on an alpine Kobresia humilism meadow. Acta Prataculturae Sinica, 2003, 12(2): 25-29. ] [29] HOUSMAN D C, NAUMBURG E, HUXMAN T E, et al. Increases in desert shrub productivity under elevated carbon dioxide vary with water availability [J]. Ecosystems, 2006, 9(3): 374-385. [30] POLLEY H W, TISCHLER C R, JOHNSON H B. Elevated atmospheric CO 2 magnifies intra-specific variation in seedling growth of honey mesquite: An assessment of relative growth rates [J]. Rangeland Ecology & Management, 2006, 59(2): 128-134. [31] MAUNEY J R, LEWIN K F, HENDREY G R, et al. Growth and yield of cotton exposed to free-air CO 2 enrichment (Face) [J]. Critical Reviews in Plant Sciences, 1992, 11(2/3): 213-222. [32] KUDO G, SUZUKI S. Warming effects on growth, production, and vegetation structure of alpine shrubs: A five-year experiment in northern Japan [J]. Ecosystem Ecology Oecologia, 2003, 135(2): 280-287 [33] 肖春旺, 张新时, 赵景柱, 等. 鄂尔多斯高原3种优势灌木幼苗对气候变暖的响应 [J]. 植物学报, 2001, 43(7): 736-741. [XIAO C W, ZHANG X S, ZHAO J Z, et al. Response of seedings of three dominant shrubs to climate warming in Ordos Plateau. Acta Botanica Sinica, 2001, 43(7): 736-741. ] [34] 朱雅娟, 贾子毅, 吴波, 等. 模拟增雨对荒漠灌木白刺枝叶生长的促进作用 [J]. 林业科学研究, 2012, 25(5): 626-631. [ZHU Y J, JIA Z Y, WU B, et al. The role of increased precipitation in promoting branch and leaf growth of Nitraria tangutorum . Forest Research, 2012, 25(5): 626-631. ] [35] 常昌明. 小针茅荒漠草原水分动态及其对地上生物量的影响 [D]. 呼和浩特: 内蒙古大学, 2014. [CHANG C M. Moisture Factor Dynamics and Its Impact on Aboveground Biomass in Stipa klemenzii Steppe. Huhhot: Inner Mongolia University, 2014. ] [36] ROXBURGH S H, BARRETT D J, BERRY S L, et al. A critical overview of model estimates of net primary productivity for the Australian continent [J]. Functional Plant Biology, 2004, 31(11): 1043-1059. [37] WANG Y P, MCGREGOR J L. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach [J]. Tellus B, 2003, 55(2): 290-304. [38] FENG X, LIU G, CHEN J M, et al. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing [J]. Journal of Environmental Management, 2007, 85(3): 563-573. [39] XIAO X, JERRY M, DAVID W K, et al. Net primary production of terrestrial ecosystems in China and its equilibrium responses to changes in climate and atmospheric CO 2 concentration [J]. Acta Phytoecologica Sinica, 1998, 22(2): 97-118. [40] ZHU W Q, PAN Y Z, ZHANG J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing [J]. Journal of Plant Ecology, 2007, 31(3): 413-424 [41] DAN L, JI J J, HE Y, et al. Use of ISLSCP II data to intercompare and validate the terrestrial net primary production in a land surface model coupled to a general circulation model [J]. Journal of Geophysical Research, 2007, 112(D2), D02S90. doi:10.1029/2006JD007721. [42] PIAO S L, FANG J Y, ZHOU L, et al. Changes in vegetation net primary productivity from 1982 to 1999 in China [J]. Global Biogeochemical Cycles, 2005, 19(2), GB2027. doi:10.1029/2004GB002274. [43] CRAMER W, KICKLIGHTER D, BONDEAU A, et al. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results [J]. Global Change Biology, 1999, 5(S1): 1-15. [44] PAN S, TIAN H, DANGAL S, et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century [J]. Journal of Geographical Sciences, 2015, 25(9): 1027-1044. [45] ZHAO M, RUNNING S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009 [J]. Science, 2010, 329(5994): 940-943. [46] FIELD C B, RANDERSON J T, MALMSTROM C M. Global net primary production: Combining ecology and remote-sensing [J]. Remote Sensing of Environment, 1995, 51(1): 74-88. [47] SINGH R, ROVSHAN S, GOROSHI S, et al. Spatial and temporal variability of net primary productivity (NPP) over terrestrial biosphere of India using NOAA- AVHRR based GloPEM model [J]. Journal of the Indian Society of Remote Sensing, 2011, 39(3): 345-353. [48] SIROTENKO O D, ABASHINA E V. Modern climate changes of biosphere productivity in Russia and adjacent countries [J]. Russian Meteorology and Hydrology, 2008, 33(4): 267-271. [49] 任正超, 朱华忠, 张德罡, 等. 俄罗斯布里亚特共和国植被NPP对气候变化的时空响应 [J]. 自然资源学报, 2011, 26(5): 790-801. [REN Z C, ZHU H Z, ZHANG D G, et al. Temporal and spatial response of vegetation net primary producticvity to climate change in Buryatiya Republic, Russia. Journal of Natural Resources, 2011, 26(5): 790-801. ] [50] ZHOU Y, ZHANG L, FENSHOLT R, et al. Climate contributions to vegetation variations in central Asian drylands: Pre- and post-USSR collapse [J]. Remote sensing, 2015, 7(3): 2449-2470. [51] EISFELDER C, KLEIN I, NIKLAUS M, et al. Net primary productivity in Kazakhstan, its spatio-temporal patterns and relation to meteorological variables [J]. Journal of Arid Environments, 2014, 103(3): 17-30. [52] GANG C, ZHOU W, WANG Z, et al. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010 [J]. Journal of Agronomy and Crop Science, 2015, 201(1): 57-68. [53] YAN L, CHEN S, HUANG J, et al. Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe [J]. Global Change Biology, 2010, 16(8): 2345-2357. [54] LLOYD J, FARQUHAR G D. Effects of rising temperatures and CO 2 on the physiology of tropical forest trees [J]. Philosophical Transactions of the Royal Society B, 2008, 363(1498): 1811-1817. [55] LIU R, PAN L P, JENERETTE G D, et al. High efficiency in water use and carbon gain in a wet year for a desert halophyte community [J]. Agricultural and Forest Meteorology, 2012, 162/163(2): 127-135. [56] HUANG G, LI Y. Phenological transition dictates the seasonal dynamics of ecosystem carbon exchange in a desert steppe [J]. Journal of Vegetation Science, 2015, 26(2): 337-347. [57] 伏玉玲, 于贵瑞, 王艳芬, 等. 水分胁迫对内蒙古羊草草原生态系统光合和呼吸作用的影响 [J]. 中国科学D辑, 2006, 36(S1): 183-193. [FU Y L, YU G R, WANG Y F, et al. Effect of water stress on ecosystem photosynthesis and respiration of a Leymus chinensis steppe in Inner Mongolia. Science in China Series D, 2006, 36(S1): 183-193. ] |
[1] | 黄端, 闫慧敏, 池泓, 耿晓蒙, 邵奇慧. 2000—2015年江汉平原农田生态系统NPP时空变化特征[J]. 自然资源学报, 2020, 35(4): 845-856. |
[2] | 陈舒婷, 郭兵, 杨飞, 韩保民, 范业稳, 杨潇, 何田莉, 刘悦, 杨雯娜. 2000—2015年青藏高原植被NPP时空变化格局及其对气候变化的响应[J]. 自然资源学报, 2020, 35(10): 2511-2527. |
[3] | 位贺杰, 张艳芳, 董孝斌, 鲁纳川, 王雪超. 渭河流域植被WUE遥感估算及其时空特征[J]. 自然资源学报, 2016, 31(8): 1275-1288. |
[4] | 姜春,吴志峰,程炯,钱乐祥. 广东省土地覆盖变化对植被净初级生产力的影响分析[J]. 自然资源学报, 2016, 31(6): 961-972. |
[5] | 牛忠恩, 闫慧敏, 黄玫, 胡云锋, 陈静清. 基于MODIS-OLI遥感数据融合技术的农田生产力估算[J]. 自然资源学报, 2016, 31(5): 875-885. |
[6] | 吴珊珊, 姚治君, 姜丽光, 王蕊, 刘兆飞. 基于MODIS的长江源植被NPP时空变化特征及其水文效应[J]. 自然资源学报, 2016, 31(1): 39-51. |
[7] | 孙庆龄, 冯险峰, 刘梦晓, 肖潇. 武陵山区植被净初级生产力遥感模拟与分析[J]. 自然资源学报, 2015, 30(10): 1628-1641. |
[8] | 任正超, 朱华忠, 张德罡, 柳小妮. 俄罗斯布里亚特共和国植被NPP对气候变化的时空响应[J]. 自然资源学报, 2011, 26(5): 790-801. |
[9] | 刘勇洪, 权维俊, 高燕虎. 华北植被的净初级生产力研究及其时空格局分析[J]. 自然资源学报, 2010, 25(4): 564-573. |
[10] | 闫伟兄, 陈素华, 乌兰巴特尔, 魏玉蓉, 杨丽萍. 内蒙古典型草原区植被NPP对气候变化的响应[J]. 自然资源学报, 2009, 24(9): 1625-1634. |
[11] | 李秀娟, 周涛, 何学兆. NPP增长驱动下的中国森林生态系统碳汇[J]. 自然资源学报, 2009, 24(3): 491-497. |
[12] | 王宗明, 国志兴, 宋开山, 刘殿伟, 张柏, 张树清, 李方, 金翠, 杨婷, 黄妮. 2000~2005年三江平原土地利用/覆被变化对植被净初级生产力的影响研究[J]. 自然资源学报, 2009, 24(1): 136-146. |
[13] | 陈正华, 麻清源, 王建, 祁元, 李净, 黄春林, 马明国, 杨国靖. 利用CASA模型估算黑河流域净第一性生产力[J]. 自然资源学报, 2008, 23(2): 263-273. |
[14] | 姜立鹏, 覃志豪, 谢雯, 王瑞杰, 徐斌, 卢琦. 中国草地生态系统服务功能价值遥感估算研究[J]. 自然资源学报, 2007, 22(2): 161-170. |
[15] | 冯险峰, 刘高焕, 陈述彭, 周文佐. 陆地生态系统净第一性生产力过程模型研究综述[J]. 自然资源学报, 2004, 19(3): 369-378. |
|