自然资源学报 ›› 2017, Vol. 32 ›› Issue (7): 1240-1255.doi: 10.11849/zrzyxb.20160667
王会来, 刘娟*, 姜培坤, 周国模, 李永夫, 吴家森
收稿日期:
2016-06-24
修回日期:
2016-10-19
出版日期:
2017-08-02
发布日期:
2017-08-02
通讯作者:
刘娟(1978- ),女,山东泰安人,博士,副教授,主要从事土壤碳汇与全球气候变化方向研究。E-mail:liujuan@zafu.edu.cn
作者简介:
王会来(1991- ),男,山东淄博人,硕士研究生,主要从事土壤碳汇与全球气候变化方向研究。E-mail: sjw8515@163.com
基金资助:
WANG Hui-lai, LIU Juan, JIANG Pei-kun, ZHOU Guo-mo, LI Yong-fu, WU Jia-sen
Received:
2016-06-24
Revised:
2016-10-19
Online:
2017-08-02
Published:
2017-08-02
Supported by:
摘要: 森林土壤是大气CO2重要的排放源。施肥、采伐、火烧、林下植被管理和土地利用方式改变等人为措施改变了土壤理化性质和土壤微气候,显著影响森林土壤CO2的产生与排放。人为干扰对森林土壤呼吸的影响已积累了丰富的研究结果,但因森林类型、土壤状况、地域差异以及气候因素的不同,即使同一种干扰因素对土壤呼吸的影响也存在促进、降低或者未改变等不同的结论。论文利用相关论文数据库查询森林土壤呼吸的文献,在简要分析影响森林土壤呼吸自然因素(土壤温度、含水量)的基础上,重点论述了施肥、采伐、火烧、林下植被管理以及土地利用方式改变等人为因素对森林土壤呼吸的影响,系统揭示了人为干扰对森林土壤呼吸影响的作用机制,并探讨今后需要加强的研究方向,以期为气候变化背景下我国林地的合理、可持续经营起到借鉴和启示的作用。
中图分类号:
王会来, 刘娟, 姜培坤, 周国模, 李永夫, 吴家森. 森林土壤呼吸对人为干扰因素的响应[J]. 自然资源学报, 2017, 32(7): 1240-1255.
WANG Hui-lai, LIU Juan, JIANG Pei-kun, ZHOU Guo-mo, LI Yong-fu, WU Jia-sen. Responses of Forest Soil Respiration to Human Disturbance[J]. JOURNAL OF NATURAL RESOURCES, 2017, 32(7): 1240-1255.
[1] IPCC. Climate Change 2013: The Physics Science Basis [M]. Cambridge, UK: Cambridge University Press, 2013. [2] MONASTERSKY R. Global carbon dioxide levels near worrisome milestone [J]. Nature, 2013, 497(7447): 13-14. [3] IPCC. Climate Change 2007: The Physical Science Basis [M]. Cambridge, UK: Cambridge University Press, 2007. [4] PAN Y, BIRDSEY RA, FANG J, et al. A large and persistent carbon sink in the world’s forests [J]. Science, 2011, 333(6045): 988-992. [5] BONDLAMBERTY B, THOMPSON A. Temperature-associated increases in the global soil respiration record [J]. Nature, 2010, 464(7288): 579-582. [6] LIU J X, ZHOU G Y, ZHANG D Q, et al. Carbon dynamics in subtropical forest soil: Effects of atmospheric carbon dioxide enrichment and nitrogen addition [J]. Journal of Soils and Sediments, 2010, 10(4): 730-738. [7] HASHIMOTO S, CARVALHAIS N, ITO A, et al. Global spatiotemporal distribution of soil respiration modeled using a global database [J]. Biogeosciences Discussions, 2015, 12(5): 4331-4364. [8] LE QUÉRÉ C, PETERS G P, ANDRES R J, et al. Global carbon budget 2013 [J]. Earth System Science Data Discussions, 2014, 6: 235-263. [9] PENG Y Y, THOMAS S C, TIAN DL. Forest management and soil respiration: Implications for carbon sequestration [J]. Environmental Research, 2008, 16: 93-111. [10] ZHOU L Y, ZHOU X H, ZHANG B C, et al. Different responses of soil respiration and its components to nitrogen addition among biomes: A meta-analysis [J]. Global Change Biology, 2014, 20(7): 2332-2343. [11] GAO Q, HASSELQUIST N J, PALMROTH S, et al. Short-term response of soil respiration to nitrogen fertilization in a subtropical evergreen forest [J]. Soil Biology and Biochemistry, 2014, 76: 297-300. [12] MASYAGINA O V, EVGRAFOVA S Y, TITOV S V, et al. Dynamics of soil respiration at different stages of pyrogenic restoration succession with different-aged burns in Evenkia as an example [J]. Russian Journal of Ecology, 2015, 46(1): 27-35. [13] MUÑOZ-ROJAS M, LEWANDROWSKI W, ERICKSON T E, et al. Soil respiration dynamics in fire affected semi-arid ecosystems: Effects of vegetation type and environmental factors [J]. Science of the Total Environment, 2016, 572: 1385-1394, doi:10.1016/j.scitotenv.2016.02.086. [14] GAO S H, CHEN J Q, TANG Y X, et al. Ecosystem carbon (CO 2 and CH 4 ) fluxes of a Populus dettoides plantation in subtropical China during and post clear-cutting [J]. Forest Ecology and Management, 2015, 357: 206-219. [15] PANG X Y, HU B, BAO W K, et al. Effect of thinning-induced gap size on soil CO 2 efflux in a reforested spruce forest in the eastern Tibetan Plateau [J]. Agricultural and Forest Meteorology, 2016, 220: 1-9. [16] ZHANG J J, LI Y F, CHANG S X, et al. Understory management and fertilization affected soil greenhouse gas emissions and labile organic carbon pools in a Chinese chestnut plantation [J]. Forest Ecology and Management, 2015, 337: 126-134. [17] TANG X L, FAN S H, QI L H, et al. Soil respiration and net ecosystem production in relation to intensive management in Moso bamboo forests [J]. Catena, 2016, 137: 219-228. [18] ZHANG Y J, GUO S L, LIU Q F, et al. Responses of soil respiration to land use conversions in degraded ecosystem of the semi-arid Loess Plateau [J]. Ecological Engineering, 2015, 74: 196-205. [19] CHANG S X, SHI Z, THOMAS B R. Soil respiration and its temperature sensitivity in agricultural and afforested poplar plantation systems in northern Alberta [J]. Biology and Fertility of Soils, 2016, 52(5): 629-641. [20] GIASSON M A, ELLISON A M, BOWDEN R D, et al. Soil respiration in a northeastern US temperate forest: A 22-year synthesis [J]. Ecosphere, 2013, 4(11): 1-28. [21] QIN Y, YI S H, CHEN J J, et al. Responses of ecosystem respiration to short-term experimental warming in the alpine meadow ecosystem of a permafrost site on the Qinghai-Tibetan Plateau [J]. Cold Regions Science and Technology, 2015, 115: 77-84. [22] NOH N J, KURIBAYASHI M, SAITOH T M, et al. Responses of soil, heterotrophic, and autotrophic respiration to experimental open-field soil warming in a cool-temperate deciduous forest [J]. Ecosystems, 2015, 19(3): 504-520. [23] KARHU K, AUFFRET M D, DUNGAIT J A J, et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response [J]. Nature, 2014, 513(7516): 81-84. [24] LUAN J W, LIU S R, CHANG S X, et al. Different effects of warming and cooling on the decomposition of soil organic matter in warm-temperate oak forests: A reciprocal translocation experiment [J]. Biogeochemistry, 2014, 121(3): 551-564. [25] DIB A E, JOHNSON C E, DRISCOLL C T, et al. Simulating effects of changing climate and CO 2 emissions on soil carbon pools at the Hubbard Brook experimental forest [J]. Global Change Biology, 2014, 20(5): 1643-1656. [26] LIU Y C, LIU S R, WAN S Q, et al. Differential responses of soil respiration to soil warming and experimental through fall reduction in a transitional oak forest in central China [J]. Agricultural and Forest Meteorology, 2016, 226/227: 186-198. [27] LU M, XU H Z, QIANG Y, et al. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis [J]. Ecology, 2013, 94(3): 726-738. [28] UEYAMA M, IWATA H, HARAZONO Y. Autumn warming reduces the CO 2 sink of black spruce forest in interior Alaska based on a nine-year eddy covariance measurement [J]. Global Change Biology, 2014, 20(4): 1161-1173. [29] ZHONG Z M, SHEN Z X, FU G. Response of soil respiration to experimental warming in a highland barley of the Tibet [J]. SpringerPlus, 2016, 5(1): 137, doi:10.1186/s40064-016-1761-0. [30] SHARKHUU A, PLANTE A F, ENKHMANDAL O, et al. Soil and ecosystem respiration responses to grazing, watering and experimental warming chamber treatments across topographical gradients in northern Mongolia [J]. Geoderma, 2016, 269: 91-98. [31] SONG X Z, PENG C H, ZHAO Z Y, et al. Quantification of soil respiration in forest ecosystems across China [J]. Atmospheric Environment, 2014, 94: 546-551. [32] XU Z F, TANG S S, XIONG L, et al. Temperature sensitivity of soil respiration in China’s forest ecosystems: Patterns and controls [J]. Applied Soil Ecology, 2015, 93: 105-110. [33] 杨庆朋, 徐明, 刘洪升, 等. 土壤呼吸温度敏感性的影响因素和不确定性 [J]. 生态学报, 2011, 31(8): 2301-2311. [YANG Q P, XU M, LIU H S, et al. Impact factors and uncertainties of the temperature sensitivity of soil respiration. Acta Ecologica Sinica, 2011, 31(8): 2301-2311. ] [34] 韩营营, 黄唯, 孙涛, 等. 不同林龄白桦天然次生林土壤碳通量和有机碳储量 [J]. 生态学报, 2015, 35(5): 1460-1469. [HAN Y Y, HUANG W, SUN T, et al. Soil organic carbon stocks and fluxes in different age stands of secondary Betula platyphylla in Xiaoxing’an Mountain, China. Acta Ecologica Sinica, 2015, 35(5): 1460-1469. ] [35] 杨毅, 黄玫, 刘洪升, 等. 土壤呼吸的温度敏感性和适应性研究进展 [J]. 自然资源学报, 2011, 26(10): 1811-1820.[YANG Y, HAUNG M, LIU H S, et al. The interrelation between temperature sensitivity and adaptability of soil respiration. Journal of Natural Resources, 2011, 26(10): 1811-1820. ] [36] WANG Y F, HAO Y B, CUI X Y, et al. Responses of soil respiration and its components to drought stress [J]. Journal of Soils and Sediments, 2014, 14(1): 99-109. [37] BRYE K R, MCMULLEN R L, SILVEIRA M L, et al. Environmental controls on soil respiration across a southern US climate gradient: A meta-analysis [J]. Geoderma Regional, 2016, 7(2): 110-119. [38] JASSAL R S, BLACK T A, NOVAK M D, et al. Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand [J]. Global Change Biology, 2008, 14(6): 1305-1318. [39] NIKOLOVA P S, RASPE S, ANDERSEN C P, et al. Effects of the extreme drought in 2003 on soil respiration in a mixed forest [J]. European Journal of Forest Research, 2009, 128(2): 87-98. [40] KIRSCHBAUM M U F, SAGGAR S, TATE K R, et al. Comprehensive evaluation of the climate-change implications of shifting land use between forest and grassland: New Zealand as a case study [J]. Agriculture Ecosystems and Environment, 2012, 68: 123-138. [41] KIRSCHBAUM M U F, SAGGAR S, TATE K R, et al. Quantifying the climate-change consequences of shifting land use between forest and agriculture [J]. Science of the Total Environment, 2013, 465: 314-324. [42] SCHARLEMANN J P, TANNER E V, HIEDERER R, et al. Global soil carbon: Understanding and managing the largest terrestrial carbon pool [J]. Carbon Management, 2014, 5(1): 81-91. [43] KIM D G, KIRSCHBAUM M U F. The effect of land-use change on the net exchange rates of greenhouse gases: A compilation of estimates [J]. Agriculture Ecosystems and Environment, 2015, 208: 114-126. [44] ZHANG T, LI Y F, CHANG S X, et al. Responses of seasonal and diurnal soil CO 2 effluxes to land-use change from paddy fields to Lei bamboo ( Phyllostachys praecox ) stands [J]. Atmospheric Environment, 2013, 77: 856-864. [45] GUNER S, TUFEKCI?OGLU A, GULENAY S, et al. Land-use type and slope position effects on soil respiration in black locust plantations in Artvin, Turkey [J]. African Journal of Agricultural Research, 2010, 5(8): 719-724. [46] SINGH M K, ASTLEY H, SMITH P, et al. Soil CO 2 -C flux and carbon storage in the dry tropics: Impact of land-use change involving bioenergy crop plantation [J]. Biomass and Bioenergy, 2015, 83: 123-130. [47] HERGOUALC’H K, VERCHOT L V. Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands [J]. Mitigation and Adaptation Strategies for Global Change, 2013, 19(6): 789-807. [48] DE GODOI S G, NEUFELD Â D, IBARR M A, et al. The conversion of grassland to acacia forest as an effective option for net reduction in greenhouse gas emissions [J]. Journal of Environmental Management, 2016, 169: 91-102. [49] NAZARIES L, TOTTEY W, ROBINSON L, et al. Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming [J]. Soil Biology and Biochemistry, 2015, 89: 123-134. [50] MAZZETTO A M, FEIGL B J, CERRI C E, et al. Comparing how land use change impacts soil microbial catabolic respiration in southwestern Amazon [J]. Brazilian Journal of Microbiology, 2016, 47(1): 63-72. [51] RAICH J W, TUFEKCIOGLU A. Vegetation and soil respiration: Correlations and controls [J]. Biogeochemistry, 2000, 48(1): 71-90. [52] CAMPOS C A. Response of soil surface CO 2 -C flux to land use changes in a tropical cloud forest (Mexico) [J]. Forest Ecology and Management, 2006, 234(1/3): 305-312. [53] IQBAL J, HU R G, DU L J, et al. Differences in soil CO 2 flux between different land use types in mid-subtropical China[J]. Soil Biology and Biochemistry, 2008, 40: 2324-2333. [54] MUKHOPADHYAY S, MAITI S. Soil CO 2 flux in grassland, afforested land and reclaimed coalmine overburden dumps: A case study [J]. Land Degradation and Development, 2014, 25(3): 216-227. [55] KOOCH Y, MOGHIMIAN N, BAYRANVAND M, et al. Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management [J]. Environmental Monitoring and Assessment, 2016, 188(1): 1-12. [56] TUFEKCIOGLU A, OZBAYRAM A K, KUCUK M. Soil respiration in apple orchards, poplar plantations and adjacent grasslands in Artvin, Turkey [J]. Journal of Environmental Biology, 2009, 30(5): 815-820. [57] 赵吉霞, 王邵军, 陈奇伯, 等. 滇中高原云南松天然林和人工林土壤呼吸特征的比较 [J]. 中南林业科技大学学报, 2015, 35(1): 96-103. [ZHAO J X, WANG S J, CHEN Q B, et al. Study on soil respiration under natural and artificial forests of Pinus yunnanensis in middle Yunnan plateau, China. Journal of Central South University of Forestry and Technology, 2015, 35(1): 96-103. ] [58] 吴君君, 杨智杰, 翁发进, 等. 米槠天然林和人工林土壤呼吸的比较研究 [J]. 环境科学, 2014, 35(6): 2426-2432. [WU J J, YANG Z J, WENG F J, et al. Comparison of soil respiration in natural Castanopsis carlesii forest and plantation forest. Environment Science, 2014, 35(6): 2426-2432. ] [59] 盛浩, 李旭, 杨智杰, 等. 中亚热带山区土地利用变化对土壤CO 2 排放的影响 [J]. 地理科学, 2010, 30(3): 446-451. [SHENG H, LI X, YANG Z J, et al. Impact of land use/cover change on soil CO 2 efflux in mid-subtropical mountainous area of southern China. Scientia Geographica Sinica, 2010, 30(3): 446-451. ] [60] PAYEUR-POIRIER J L, COURSOLLE C, MARGOLIS H A, et al. CO 2 fluxes of a boreal black spruce chronosequence in eastern North America [J]. Agricultural and Forest Meteorology, 2012, 153(153): 94-105. [61] 张睿, 白杨, 刘娟, 等. 亚热带天然阔叶林转换为杉木人工林对土壤呼吸的影响 [J]. 应用生态学报, 2015, 26(10): 2946-2952. [ZHANG R, BAI Y, LIU J, et al. Effects of conversion of natural broad-leaved forest to Chinese fir plantation on soil respiration in subtropical China. Chinese Journal of Applied Ecology, 2015, 26(10): 2946-2952. ] [62] SHI Z, LI Y Q, WANG S J, et al. Accelerated soil CO 2 efflux after conversion from secondary oak forest to pine plantation in southeastern China [J]. Ecological Research, 2009, 24(6): 1257-1265. [63] SHI B K, GAO W F, JIN G Z. Effects on rhizospheric and heterotrophic respiration of conversion from primary forest to secondary forest and plantations in northeast China [J]. European Journal of Soil Biology, 2015, 66: 11-18. [64] LIU J, JIANG P K, WANG H L, et al. Seasonal soil CO 2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China [J]. Forest Ecology and Management, 2011, 262: 1131-1137. [65] SUN Z Z, LIU L L, MA Y C, et al. The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil [J]. Agricultural and Forest Meteorology, 2014, 197: 103-110. [66] TRESEDER K K. Nitrogen additions and microbial biomass: A meta analysis of ecosystem studies [J]. Ecology Letters, 2008, 11(10): 1111-1120. [67] 方华, 莫江明. 氮沉降对森林凋落物分解的影响 [J]. 生态学报, 2006, 26(9): 3127-3136. [FANG H, MO J M. Effects of nitrogen deposition on forest litter decomposition. Acta Ecologica Sinica, 2006, 26(9): 3127-3136. ] [68] DU Y H, GUO P, LIU J Q, et al. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests [J]. Global Change Biology, 2014, 20(10): 3222-3228. [69] BOWDEN R D, DAVIDSON E, SAVAGE K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest [J]. FEMS Microbiology Letters, 2004, 196(1): 43-56. [70] MO J M, ZHANG W, ZHU W X, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China [J]. Global Change Biology, 2008, 14(2): 403-412. [71] GRIP H, JANSSON P E. Modelling 100 Years of C and N Fluxes at Fertilized Swedish Mountainous Spruce Forests. Management of Mountain Watersheds [M]. Berlin: Springer Netherlands, 2012: 200-206. [72] VALLACK H W, LERONNI V, METCALFE D B, et al. Application of nitrogen fertilizer to a boreal pineforest has a negative impact on the respiration of ectomycorrhizal hyphae [J]. Plant and Soil, 2012, 352(1): 405-417. [73] FAN H B, WU J P, LIU W F, et al. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest [J]. Plant and Soil, 2014, 379(1): 361-371. [74] 吴迪, 张蕊, 高升华, 等. 模拟氮沉降对长江中下游滩地杨树林土壤呼吸各组分的影响 [J]. 生态学报, 2015, 35(3): 717-724. [WU D, ZHANG R, GAO S H, et al. Effects of simulated nitrogen deposition on the each component of soil respiration in the Populus L. plantations in a riparian zone of the mid-lower Yangtze River. Acta Ecologica Sinica, 2015, 35(3): 717-724. ] [75] 王清奎, 李艳鹏, 张方月, 等. 短期施氮肥降低杉木幼林土壤的根系和微生物呼吸 [J]. 植物生态学报, 2015, 39(12): 1166-1175. [WANG Q K, LI Y P, ZHANG F Y, et al. Short-term nitrogen fertilization decreased root and microbial respiration in a young Cunninghamia lanceolata plantation. Chinese Journal of Plant Ecology, 2015, 39(12): 1166-175. ] [76] JASSAL R S, BLACK T A, TROFYMOW J A, et al. Soil CO 2 and N 2 O flux dynamics in a nitrogen-fertilized Pacific Northwest Douglas-fir stand [J]. Geoderma, 2010, 157(3/4): 118-125. [77] TU L H, HU T X, ZHANG J, et al. Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem [J]. Soil Biology and Biochemistry, 2013, 58: 255-264. [78] 向元彬, 黄从德, 胡庭兴, 等. 华西雨屏区巨桉人工林土壤呼吸对模拟氮沉降的响应 [J]. 林业科学, 2014, 50(1): 21-26. [XIANG Y B, HUANG C D, HU T X, et al. Response of soil respiration to simulated nitrogen deposition in an Eucalyptus grandis plantation in the rainy area of western China. Scientia Silvae Sinicae, 2014, 50(1): 21-26. ] [79] ZENG W J, WANG W. Combination of nitrogen and phosphorus fertilization enhance ecosystem carbon sequestration in a nitrogen-limited temperate plantation of northern China [J]. Forest Ecology and Management, 2015, 341: 59-66. [80] ALLISON S D, CZIMCZIK C I, TRESEDER K K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest [J]. Global Change Biology, 2008, 14(5): 1156-1168. [81] LÓPEZ-VALDEZN F, FERNÁNDEZ-LUQUEÑO F, LUNA-SUÁREZ S, et al. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower and amended with organic or inorganic fertilizers [J]. Science of the Total Environment, 2011, 412/413: 257-264. [82] KRAUSE K, NIKLAUS P A, SCHLEPPI P. Soil-atmosphere fluxes of the greenhouse gases CO 2 , CH 4 and N 2 O in a mountain spruce forest subjected to long-term N addition and to tree girdling [J]. Agricultural and Forest Meteorology, 2013, 181: 61-68. [83] SHRESTHA R K, STRAHM B D, SUCRE E B. Greenhouse gas emissions in response to nitrogen fertilization in managed forest ecosystems [J]. New Forests, 2015, 46(2): 167-193. [84] JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition [J]. Nature Geoscience, 2010, 3(5): 315-322. [85] ZHONG Y, YAN W M, SHANGGUAN Z P. The effects of nitrogen enrichment on soil CO 2 fluxes depending on temperature and soil properties [J]. Global Ecology and Biogeography, 2016, 25(4): 475-488. [86] LIU L L, GREAVER T L. A global perspective on belowground carbon dynamics under nitrogen enrichment [J]. Ecology Letters, 2010, 13(7): 819-828. [87] RYU S R, CONCILIO A, CHEN J, et al. Prescribed burning and mechanical thinning effects on belowground conditions and soil respiration in a mixed-conifer forest, California [J]. Forest Ecology and Management, 2009, 257(4): 1324-1332. [88] KIM Y S, MAKOTO K, TAKAKAI F, et al. Greenhouse gas emissions after a prescribed fire in white birch-dwarf bamboo stands in northern Japan, focusing on the role of charcoal [J]. European Journal of Forest Research, 2011, 130(6): 1031-1044. [89] SULLIVAN B W, KOLB T E, HART S C, et al. Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA [J]. Biogeochemistry, 2011, 104(1): 251-265. [90] TAN W W, SUN L, HU H Q, et al. Effect of fire disturbances on soil respiration of Larix gmelinii Rupr. forest in the Da Xing’an Mountain during growing season [J]. African Journal of Biotechnology, 2012, 11(21): 4833-4840. [91] MORISHITA T, NOGUCHI K, KIM Y, et al. CO 2 , CH 4 and N 2 O fluxes of upland black spruce ( Picea mariana ) forest soils after forest fires of different intensity in interior Alaska [J]. Soil Science and Plant Nutrition, 2014, 61(1): 98-105. [92] SUN L, HU T X, KIM J H, et al. The effect of fire disturbance on short-term soil respiration in typical forest of Greater Xing’an Range, China [J]. Journal of Forestry Research, 2014, 25(3): 613-620. [93] ZHAO Y, WANG Y Z, XU Z H, et al. Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia [J]. Biogeosciences Discussions, 2015, 12(13): 6279-6290. [94] 胡海清, 吴畏, 岳彩玲, 等. 火干扰后短期白桦林和落叶松林土壤呼吸及其组分的影响 [J]. 植物研究, 2015, 35(2): 279-288. [HU H Q, WU W, YUE C L, et al. Effect of fire disturbances on short-term soil respiration and its components of Larix gmelinii and Betula platyphylla forests in Xiaoxing’an Mountains. Bulletin of Botanical Research, 2015, 35(2): 279-288. ] [95] GUO J F, YANG Y S, CHEN G S, et al. Effects of clear-cutting and slash burning on soil respiration in Chinese fir and evergreen broadleaved forests in mid-subtropical China [J]. Plantand Soil, 2010, 333(1): 249-261. [96] TUFEKCIOGLU A, KUCUK M, BILMIS T, et al. Soil respiration and root biomass responses to burning in calabrian pine ( Pinus brutia ) stands in Edirne, Turkey [J]. Journal of Environmental Biology, 2010, 31(1/2): 15-19. [97] KÖSTER K, BERNINGER F, LINDÉN A, et al. Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence [J]. Geoderma, 2014, 235/236: 74-82. [98] FEST B J, LIVESLEY S J, FISCHER J C V, et al. Repeated fuel reduction burns have little long-term impact on soil greenhouse gas exchange in a dry sclerophyll eucalypt forest [J]. Agricultural and Forest Meteorology, 2015, 201: 17-25. [99] KULMALAA L, AALTONEN H, BERNINGER F, et al. Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash [J]. Agricultural and Forest Meteorology, 2014, 188: 33-44. [100] KÖSTER E, KÖSTER K, BERNINGER F, et al. Carbon dioxide, methane and nitrous oxide fluxes from podzols of a fire chronosequence in the boreal forests in Värriö, Finnish Lapland [J]. Geoderma Regional, 2015, 5: 181-187. [101] 韩春兰, 邵帅, 王秋兵, 等. 兴安落叶松林火干扰后土壤有机碳含量变化 [J]. 生态学报, 2015, 35(9): 3023-3033. [HAN C L, SHAO S, WANG Q B, et al. The variability of soil organic carbon content in Larix gmelinii forests after fire disturbances. Acta Ecologica Sinica, 2015, 35(9): 3023-3033. ] [102] GUO J F, CHEN G S, XIE J S, et al. Effect of heat-disturbance on microbial biomass carbon and microbial respiration in Chinese fir ( Cunninghamia lanceolata ) forest soils [J]. Journal of Forestry Research, 2015, 26(4): 933-939. [103] WANG Q K, ZHONG M C, WANG S L. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems [J]. Forest Ecology and Management, 2012, 271: 91-97. [104] LI F, LEVIS S, WARD D S. Quantifying the role of fire in the Earth system-Part 1: Improved global fire modeling in the Community Earth System Model (CESM1) [J]. Biogeosciences, 2013, 10(4): 2293-2314. [105] 郭剑芬, 杨玉盛, 陈光水, 等. 火烧对森林土壤有机碳的影响研究进展 [J]. 生态学报, 2015, 35(9): 2800-2809. [GUO J F, YANG Y S, CHEN G S, et al. A review of effects of fire on soil organic carbon in forests. Acta Ecologica Sinica, 2015, 35(9): 2800-2809. ] [106] MARAÑÓN-JIMÉNEZA S, CASTRO J, KOWALSKI A S, et al. Post-fire soil respiration in relation to burnt wood management in a Mediterranean mountain ecosystem [J]. Forest Ecology and Management, 2011, 261(8): 1436-1447. [107] AGUILOS M, TAKAGI K, LIANG N, et al. Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest [J]. Agricultural and Forest Meteorology, 2014, 197: 26-39. [108] TEMPLETON B S, SEILER J R, PETERSON J A, et al. Environmental and stand management influences on soil CO 2 efflux across the range of loblolly pine [J]. Forest Ecology and Management, 2015, 355: 15-23. [109] POIRIER V, PARÉ D, BOIFFIN J, et al. Combined influence of fire and salvage logging on carbon and nitrogen storage in boreal forest soil profiles [J]. Forest Ecology and Management, 2014, 326: 133-141. [110] WILLIAMS C A, VANDERHOOF M K, KHOMIK M, et al. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment [J]. Global Change Biology, 2014, 20(3): 992-1007. [111] PAUL-LIMOGES E, BLACK T A, CHRISTEN A, et al. Effect of clearcut harvesting on the carbon balance of a Douglas-fir forest [J]. Agricultural and Forest Meteorology, 2015, 203: 30-42. [112] KIM C. Soil CO 2 efflux in clear-cut and uncut red pine ( Pinus densiflora S.et Z.) stands in Korea [J]. Forest Ecology and Management, 2008, 255(8/9): 3318-3321. [113] TAKAGI K, FUKUZAWA K, LIANG N, et al. Change in CO 2 balance under a series of forestry activities in a cool-temperate mixed forest with dense undergrowth [J]. Global Change Biology, 2009, 15(5): 1275-1288. [114] ZHA T S, BARR A G, BLACK T A, et al. Carbon sequestration in boreal jack pine stands following harvesting [J]. Global Change Biology, 2009, 15(6): 1475-1487. [115] LAVOIE M, KELLMAN L, RISK D. The effects of clear-cutting on soil CO 2 , CH 4 , and N 2 O flux, storage and concentration in two Atlantic temperate forests in Nova Scotia, Canada [J]. Forest Ecology and Management, 2013, 304: 355-369. [116] 王旭, 周广胜, 蒋延玲, 等. 长白山阔叶红松林皆伐迹地土壤呼吸作用 [J]. 植物生态学报, 2007, 31(3): 355-362.[WANG X, ZHOU G S, JIANG Y L, et al. Soil respiration in a clear-cut broad-leaved korean pine forest of Changbai Mountain. Chinese Journal of Plant Ecology, 2007, 31(3): 355-362. ] [117] MORONI M T, CARTER P Q, RYAN D A. Harvesting and slash piling affects soil respiration, soil temperature, and soil moisture regimes in new found land boreal forests [J]. Canadian Journal of Soil Science, 2009, 89(3): 343-355. [118] WEBSTERA K L, WILSON S A, HAZLETT P W, et al. Soil CO 2 efflux and net ecosystem exchange following biomass harvesting: Impacts of harvest intensity, residue retention and vegetation control [J]. Forest Ecology and Management, 2016, 360: 181-194. [119] YASHIRO Y, WAN R K, OKUDA T, et al. The effects of logging on soil greenhouse gas (CO 2 , CH 4 , N 2 O) flux in a tropical rain forest, Peninsular Malaysia [J]. Agricultural and Forest Meteorology, 2008, 148(5): 799-806. [120] KAARAKKA L, HYVÖNEN R, STRÖMGREN M, et al. Carbon and nitrogen pools and mineralization rates in boreal forest soil after stump harvesting [J]. Forest Ecology and Management, 2016, 377: 61-70. [121] GONZALEZ-BENECKE C A, SAMUELSON L J, MARTIN T A, et al. Modeling the effects of forest management on in situ and ex situ longleaf pine forest carbon stocks [J]. Forest Ecology and Management, 2015, 355: 24-36. [122] HYVÖNEN R, KAARAKKA L, LEPPÄLAMMI-KUJANSUU J, et al. Effects of stump harvesting on soil C and N stocks and vegetation 8-13 years after clear-cutting [J]. Forest Ecology and Management, 2016, 371: 23-32. [123] CHENG X Q, KANG F F, HAN H R, et al. Effect of thinning on partitioned soil respiration in a young Pinus tabulaeformis plantation during growing season [J]. Agricultural and Forest Meteorology, 2015, 214/215: 473-482. [124] 孟春, 王立海, 沈微. 择伐对小兴安岭针阔叶混交林土壤呼吸的影响 [J]. 应用生态学报, 2008, 19(4): 729-734.[MENG C, WANG L H, SHEN W. Effects of selective cutting on soil respiration in conifer/broad-leaved mixed forests in Xiao-xing’anling. Chinese Journal of Applied Ecology, 2008, 19(4): 729-734. ] [125] SULLIVAN B W, KOLB T E, HART S C, et al. Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosa pine forests [J]. Forest Ecology and Management, 2008, 255(12): 4047-4055. [126] TIAN D L, YAN W D, FANG X, et al. Influence of thinning on soil CO 2 efflux in Chinese fir plantations [J]. Pedosphere, 2009, 19(3): 273-280. [127] OLAJUYIGBE S, TOBIN B, SAUNDERS M, et al. Forest thinning and soil respiration in a Sitka spruce forest in Ireland [J]. Agricultural and Forest Meteorology, 2012, 157: 86-95. [128] 刘可, 韩海荣, 康峰峰, 等. 山西太岳山油松人工林生长季土壤呼吸对择伐强度的响应 [J]. 生态学杂志, 2013, 32(12): 3173-3181. [LIU K, HAN H R, KANG F F, et al. Responses of soil respiration to selective cutting intensity in Pinus tabulaeformis plantation in Taiyue Mountain of China during growing season. Chinese Journal of Ecology, 2013,32(12): 3173-3181. ] [129] JÓNSSON J Á, SIGURDSSON B D. Effects of thinning and fertilization on soil respiration in a cottonwood plantation in Iceland [J]. Biogeosciences Discussions, 2009, 6(5): 9257-9278. [130] WU J P, LIU Z F, CHEN D M, et al. Understory plants can make substantial contributions to soil respiration: Evidence from two subtropical plantations [J]. Soil Biology and Biochemistry, 2011, 43(11): 2355-2357. [131] 李海防, 夏汉平, 傅声雷, 等. 剔除林下灌草和添加翅荚决明对尾叶桉林土壤温室气体排放的影响 [J]. 植物生态学报, 2009, 33(6): 1015-1022. [LI H F, XIA H P, FU S L, et al. Emissions of soil greenhouse gases in response to under-story removal and Cassia alata addition in an Eucalyptus urophylla plantation in Guangdong Province, China. Chinese Journal of Plant Ecology, 2009, 33(6): 1015-1022. ] [132] 李海防, 张杏锋. 剔除灌草和添加翅荚决明对厚荚相思林土壤温室气体排放的影响 [J]. 应用生态学报, 2010, 21(3): 563-568. [LI H F, ZHANG X F. Soil greenhouse gases emission from an Acacia crassicarpa plantation under effects of under-story removal and Cassia alata addition. Chinese Journal of Applied Ecology, 2010, 21(3): 563-568. ] [133] ZHANG J J, LI Y F, CHANG S X, et al. Understory vegetation management affected greenhouse gas emissions and labile organic carbon pools in an intensively managed Chinese chestnut plantation [J]. Plant and Soil, 2014, 376(1): 363-375. [134] KONDO M, MURAOKA H, UCHIDA M, et al. Refixation of respired CO 2 by understory vegetation in a cool-temperate deciduous forest in Japan [J]. Agricultural and Forest Meteorology, 2005, 134(1/4): 110-121. [135] 贺同鑫, 李艳鹏, 张方月, 等. 林下植被剔除对杉木林土壤呼吸和微生物群落结构的影响 [J]. 植物生态学报, 2015, 39(8): 797-806. [HE T X, LI Y P, ZHANG F Y, et al. Effects of understory removal on soil respiration and microbial community composition structure in a Chinese fir plantation. Chinese Journal of Plant Ecology, 2015, 39(8): 797-806. ] [136] 刘娟, 陈雪双, 吴家森, 等. 剔除杂草对山核桃林土壤温室气体排放的影响 [J]. 应用生态学报, 2015, 26(3): 666-674. [LIU J, CHEN X S, WU J S, et al. Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands. Chinese Journal of Applied Ecology, 2015, 26(3): 666-674. ] [137] WAN S Z, ZHANG C L, CHEN Y Q, et al. Interactive effects of understory removal and fertilization on soil respiration in subtropical Eucalyptus plantations [J]. Journal of Plant Ecology, 2015, 8(3): 284-290. [138] WANG X L, ZHAO J, WU J P, et al. Impacts of understory species removal and/or addition on soil respiration in a mixed forest plantation with native species in southern China [J]. Forest Ecology and Management, 2011, 261(6): 1053-1060. [139] LI H F, FU S L, ZHAO H T, et al. Forest soil CO 2 fluxes as a function of understory removal and N-fixing species addition [J]. Journal of Environmental Sciences, 2011, 23(6): 949-957. [140] QIAO Y F, MIAO S J, SILVA L C R, et al. Understory species regulate litter decomposition and accumulation of C and N in forest soils: A long-term dual-isotope experiment [J]. Forest Ecology and Management, 2014, 329: 318-327. [141] WANG F M, ZOU B, LI H F, et al. The effect of understory removal on microclimate and soil properties in two subtropical lumber plantations [J]. Journal of Forest Research, 2014, 19(1): 238-243. [142] MATSUSHITA K, TOMOTSUNE M, SAKAMAKI Y, et al. Effects of management treatments on the carbon cycle of a cool-temperate broad-leaved deciduous forest and its potential as a bioenergy source [J]. Ecological Research, 2015, 30(2): 293-302. [143] 方精云, 王娓. 作为地下过程的土壤呼吸: 我们理解了多少? [J]. 植物生态学报, 2007, 31(3): 345-347. [FANG J Y, WANG W. Soil respiration as a key belowground process: Issues and perspectives. Chinese Journal of Plant Ecology, 2007, 31(3): 345-347. ] |
[1] | 廖伟华, 聂鑫, 蒋卫国. 基于序列模式的土地利用变化分析——以广西壮族自治区为例[J]. 自然资源学报, 2020, 35(5): 1160-1171. |
[2] | 卢龙辉, 陈福军, 许月卿, 黄安, 黄玲. 京津冀“生态系统服务转型”及其空间格局[J]. 自然资源学报, 2020, 35(3): 532-545. |
[3] | 戴尔阜, 汪晓帆, 朱建佳, 王晓莉. 采伐与人工更新对红壤丘陵区森林面积和地上生物量的影响模拟——以会同县磨哨林场为例[J]. 自然资源学报, 2020, 35(12): 2995-3006. |
[4] | 臧玉珠, 刘彦随, 杨园园. 山区县域土地利用格局变化及其地形梯度效应——以井冈山市为例[J]. 自然资源学报, 2019, 34(7): 1391-1404. |
[5] | 于元赫, 李子君, 林锦阔, 刘金玉, 王硕. 沂河流域土地利用时空变化图谱特征分析[J]. 自然资源学报, 2019, 34(5): 975-988. |
[6] | 罗娅, 熊康宁, 李永垚, 盈斌, 韦清章. 石漠化治理区土地利用变化安全性评价——以花江、红枫湖、鸭池石漠化治理区为例[J]. 自然资源学报, 2019, 34(3): 600-612. |
[7] | 朱臻, 徐志刚, 沈月琴, 占菁, 李博伟, 陈梅. 非农就业对南方集体林区不同规模林农营林轮伐期的影响[J]. 自然资源学报, 2019, 34(2): 236-249. |
[8] | 张冉, 王义民, 畅建霞, 黎云云. 基于水资源分区的黄河流域土地利用变化对人类活动的响应[J]. 自然资源学报, 2019, 34(2): 274-287. |
[9] | 李博伟. 土地流转契约稳定性对转入土地农户化肥施用强度和环境效率的影响[J]. 自然资源学报, 2019, 34(11): 2317-2332. |
[10] | 荆延德, 张华美. 基于LUCC的南四湖流域面源污染输出风险评估[J]. 自然资源学报, 2019, 34(1): 128-139. |
[11] | 权瑞松. 基于情景模拟的上海土地利用变化预测及其水文效应[J]. 自然资源学报, 2018, 33(9): 1552-1562. |
[12] | 陈雅如, 肖文发, 滕明君, 冯源. 三峡库区景观格局粒度效应及其对土地利用变化过程的响应[J]. 自然资源学报, 2018, 33(4): 588-599. |
[13] | 杨浩, 王子羿, 王婧, 孟娜. 京津冀城市群土地利用变化对热环境的影响研究[J]. 自然资源学报, 2018, 33(11): 1912-1925. |
[14] | 邵思雅, 张晶, 周丽花, 乔岩. 气溶胶直接辐射效应对全球陆地生态系统碳循环的影响[J]. 自然资源学报, 2018, 33(1): 27-36. |
[15] | 李婷, 刘康, 马力阳, 包玉斌, 吴磊. 秦岭山地丹江流域土地利用变化的土壤侵蚀效应评价[J]. 自然资源学报, 2016, 31(4): 583-595. |
|