[1] BAAH-ACHEAMFOUR M, CHANG S X, CARLYLE C N, et al. Carbon pool size and stability are affected by trees and grassland cover types within agroforestry systems of western Canada [J]. Agriculture Ecosystems & Environment, 2015, 213: 105-113. [2] RONG Y, MA L, JOHNSON D A, et al. Soil respiration patterns for four major land-use types of the agro-pastoral region of northern China [J]. Agriculture Ecosystems & Environment, 2015, 213: 142-150. [3] 程瑞梅, 肖文发, 王晓荣, 等. 三峡库区植被不同演替阶段的土壤养分特征 [J]. 林业科学, 2010, 46(9): 1-6. [CHENG R M, XIAO W F, WANG X R, et al. Soil nutrient characteristics in different vegetation successional stages of Three Gorges Reservoir Area. Scientia Silvae Sinicae, 2010, 46(9): 1-6. ] [4] 张超, 刘国彬, 薛萐, 等. 黄土丘陵区不同林龄人工刺槐林土壤酶演变特征 [J]. 林业科学, 2010, 46(12): 23-29. [ZHANG C, LIU G B, XUE S, et al. Evolution of soil enzyme activities of Robinia pseudoacacia plantation at different ages in Loess Hilly Region. Scientia Silvae Sinicae, 2010, 46(12): 23-29. ] [5] TIAN K, ZHAO Y, XU X, et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis [J]. Agriculture Ecosystems & Environment, 2015, 204: 40-50. [6] SIMPSON R J, STEFANSKI A, MARSHALL D J, et al. Management of soil phosphorus fertility determines the phosphorus budget of a temperate grazing system and is the key to improving phosphorus efficiency [J]. Agriculture, Ecosystems & Environment, 2015, 212: 263-277. [7] SHEN R C, XU M, LI R Q, et al. Spatial variability of soil microbial biomass and its relationships with edaphic, vegetational and climatic factors in the Three-River Headwaters region on Qinghai-Tibetan Plateau [J]. Applied Soil Ecology, 2015, 95: 191-203. [8] ZHANG T, LI Y F, CHANG S X, et al. Converting paddy fields to Lei bamboo ( Phyllostachys praecox ) stands affected soil nutrient concentrations, labile organic carbon pools, and organic carbon chemical compositions [J]. Plant and Soil, 2012, 367(1/2): 249-261. [9] ANDERSSON K O, TIGHE M K, GUPPY C N, et al. Incremental acidification reveals phosphorus release dynamics in alkaline vertic soils [J]. Geoderma, 2015, 259: 35-44. [10] MARTIN M, STANCHI S, HOSSAIN K M J, et al. Potential phosphorus and arsenic mobilization from Bangladesh soils by particle dispersion [J]. Science of the Total Environment, 2015, 536: 973-980. [11] 边雪廉, 赵文磊, 岳中辉, 等. 土壤酶在农业生态系统碳、氮循环中的作用研究进展 [J]. 中国农学通报, 2016, 32(4): 171-178. [BIAN X L, ZHAO W L, YUE Z H, et al. Research process of soil enzymes effect on carbon and nitrogen cycle in agricultural ecosystem. Chinese Agricultural Science Bulletin, 2016, 32(4): 171-178. ] [12] 周礼恺. 土壤酶学 [M]. 北京: 科学出版社, 1987. [ZHOU L K. Soil Enzymology. Beijing: Science Press, 1987. ] [13] 商素云, 李永夫, 姜培坤, 等. 天然灌木林改造成板栗林对土壤碳库和氮库的影响 [J]. 应用生态学报, 2012, 23(3): 659-665. [SHANG S Y, LI Y F, JIANG P K, et al. Effects of the conversion from native shrub forest to Chinese chestnut plantation on soil carbon and nitrogen pools. Chinese Journal of Applied Ecology, 2012, 23(3): 659-665. ] [14] YANG K, ZHU J J, YAN Q L, et al. Changes in soil P chemistry as affected by conversion of natural secondary forests to larch plantations [J]. Forest Ecology and Management, 2010, 260(3): 422-428. [15] 龚伟, 胡庭兴, 王景燕, 等. 川南天然常绿阔叶林人工更新后土壤氮库与微生物的季节变化 [J]. 生态学报, 2011, 31(7): 1763-1771. [GONG W, HU T X, WANG J Y, et al. Seasonal variation of soil nitrogen pools and microbes under natural evergreen broadleaved forest and its artificial regeneration forests in southern Sichuan Province, China. Acta Ecologica Sinica, 2011, 31(7): 1763-1771. ] [16] 苏志峰, 杨文平, 杜天庆, 等. 施肥深度对生土地玉米根系及根际土壤肥力垂直分布的影响 [J]. 中国生态农业学报, 2016, 24(2): 142-153. [SU Z F, YANG W P, DU T Q, et al. Effect of fertilization depth on maize root and rhizosphere soil fertility vertical distribution in immature loess subsoil. Chinese Journal of Eco-Agriculture, 2016, 24(2): 142-153. ] [17] 鲁如坤. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社, 2000. [LU R K. Soil Agricultural Chemistry Analysis. Beijing: China Agricultural Science and Technology Press, 2000. ] [18] WU J S, JIANG P K, CHANG S X, et al. Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China [J]. Canadian Journal of Soil Science, 2010, 90(3): 27-36. [19] JONES D L, WILLETT V B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil [J]. Soil Biology & Biochemistry, 2006, 38(5): 991-999. [20] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biology & Biochemistry, 1987, 19(6): 703-707. [21] GUO F M, YOST R S. Partitioning soil phosphorus into three discrete pools of differing availability [J]. Soil Science, 1998, 163(2): 822-833. [22] CHEN D, HU M, YI G, et al. Reconstructing historical changes in phosphorus inputs to rivers from point and nonpoint sources in a rapidly developing watershed in eastern China, 1980-2010 [J]. Science of the Total Environment, 2015, 533: 196-204. [23] KANDELER E, GERBER H. Short-term assay of soil urease activity using colorimetric determination of ammonia [J]. Biology and Fertility of Soils, 1988, 6(1): 68-72. [24] 关松荫. 土壤酶及其研究方法 [M]. 北京: 农业出版社, 1983. [GUAN S Y. Soil Enzyme and Its Study Method. Beijing: Agriculture Press, 1983. ] [25] TABATABAI M A, BREMNER J M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity [J]. Soil Biology and Biochemistry, 1969, 1(2): 301-307. [26] GOODRIDGE B M, MELACK J M. Temporal evolution and variability of dissolved inorganic nitrogen in beach pore water revealed using radon residence times [J]. Environmental Science & Technology, 2014, 48(24): 14211-14218. [27] CHERUBIN M R, LUIZ A, FRANCO C, et al. Sugarcane expansion in Brazilian tropical soils-effects of land use change on soil chemical attributes [J]. Agriculture Ecosystems & Environment, 2015, 211: 173-184. [28] ASHAGRIE Y, ZECH W. Dynamics of dissolved nutrients in forest floor leachates: Comparison of a natural forest ecosystem with monoculture tree species plantations in Southeast Ethiopia [J]. Ecohydrology & Hydrobiology, 2010, 10(2): 183-190. [29] 张彪, 高人, 杨玉盛, 等. 万木林自然保护区不同林分土壤可溶性有机氮含量 [J]. 应用生态学报, 2010, 21(7): 1635-1640. [ZHANG B, GAO R, YANG Y S, et al. Soil soluble organic nitrogen content in different forest stands in Wanmulin Nature Reserve. Chinese Journal of Applied Ecology, 2010, 21(7): 1635-1640. ] [30] 刘艳, 周国逸, 刘菊秀. 陆地生态系统可溶性有机氮研究进展 [J]. 生态学杂志, 2005, 24(5): 573-577. [LIU Y, ZHOU G Y, LIU J X. Advances in studies on dissolved organic nitrogen in terrestrial ecosystems. Chinese Journal of Ecology, 2005, 24 (5): 573-577. ] [31] PAUNGFOO-LONHIENNE C, VISSER J, LONHIENNE T G A, et al. Past, present and future of organic nutrients [J]. Plant Soil, 2012, 359(1): 1-18. [32] 方丽娜, 杨效东, 杜杰. 土地利用方式对西双版纳热带森林土壤微生物生物量碳的影响 [J]. 应用生态学报, 2011, 22(4): 837-844. [FANG L N, YANG X D, DU J. Effects of land use pattern on soil microbial biomass carbon in Xishuangbanna. Chinese Journal of Applied Ecology, 2011, 22(4): 837-844. ] [33] 秦华, 徐秋芳, 曹志洪. 长期集约经营条件下雷竹林土壤微生物量的变化 [J]. 浙江林学院学报, 2010, 27(1): 1-7. [QIN H, XU Q F, CAO Z H. Soil microbial biomass in long-term and intensively managed Phyllostachys praecox stands. Journal of Zhejiang Forestry College, 2010, 27(1): 1-7. ] [34] HUANG C, ZHANG M, ZOU J, et al. Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China [J]. Science of the Total Environment, 2015, 536: 173-181. [35] 胡卫滨, 潘炘, 童文仁, 等. 土壤养分和施肥对板栗产量的影响 [J]. 浙江林业科技, 2014, 34(1): 38-41. [HU W B, PAN X, TONG W R, et al. Effects of soil nutrient and fertilization on yield of Castanea mollissima . Journal of Zhejiang Forestry Science & Technology, 2014, 34(1): 38-41. ] [36] YE D, LI T, YU H, et al. P accumulation of Polygonum hydropiper , soil P fractions and phosphatase activity as affected by swine manure [J]. Applied Soil Ecology, 2015, 86: 10-18. [37] 林开淼, 郭剑锋, 杨智杰, 等. 不同林龄人促天然更新林土壤磷素形态及有效性分析 [J]. 中南林业科技大学学报, 2014, 34(9): 6-11. [LIN K M, GUO J F, YANG Z J, et al. Soil phosphorus forms and availability in natural regeneration by man-aided Castanopsis carlesii forests. Journal of Central South University of Forestry & Technology, 2014, 34(9): 6-11. ] [38] MARCOS J A, MARCOS E, TABOADA A, et al. Comparison of community structure and soil characteristics in different aged Pinus sylvestris plantations and a natural pine forest [J]. Forest Ecology and Management, 2007, 247(1): 35-42. [39] 廖育林, 郑圣先, 鲁艳红, 等. 长期施钾对红壤水稻土水稻产量及土壤钾素状况的影响 [J]. 植物营养与肥料学报, 2009, 6(2): 1372-1379. [LIAO Y L, ZHENG S X, LU Y H, et al. Effects of long-term K fertilization on rice yield and soil K status in reddish paddy soil. Plant Nutrition & Fertilizer Science, 2009, 6(2): 1372-1379. ] [40] 肖鹏, 李永夫, 姜培坤, 等. 常绿阔叶林改造成雷竹林对土壤活性碳库与氮库的影响 [J]. 湖北农业科学, 2012, 51(21): 4739-4743. [XIAO P, LI Y F, JIANG P K, et al. Effect of conversion form evergreen broad-leaved forest to Phyllostachys violascens cv. Prevernalis forest on soil labile carbon and nitrogen pools. Hubei Agricultural Sciences, 2012, 51 (21): 4739-4743. ] [41] FENG Q, LI F R, LIU J L, et al. Ground-dwelling arthropod community response to native grassland conversion in a temperate desert of northwestern China [J]. Journal of Insect Conservation, 2015, 19(1): 1-13. [42] RODZIK J, MROCZEK P, WIŚNIEWSKI T. Pedological analysis as a key for reconstructing primary loess relief—A case study from the Magdalenian site in Klementowice (eastern Poland) [J]. Catena, 2014, 117(3): 50-59. [43] BAUER A M. Impacts of mid- to late-Holocene land use on residual hill geomorphology: A remote sensing and archaeological evaluation of human-related soil erosion in central Karnataka [J]. Holocene, 2013, 24 (1): 3-14. [44] 赵志强, 包耀贤, 廖超英, 等. 乌兰布和沙漠东北部沙区人工林土壤钾素特征研究 [J]. 水土保持学报, 2010, 24(1): 176-180. [ZHAO Z Q, BAO Y X, LIAO C Y, et al. Soil potassium characteristics on planted forest in the northeast sandy area of Ulanbuh Desert. Journal of Soil & Water Conservation, 2010, 24(1): 176-180. ] [45] 龚珊珊, 廖善刚. 桉树人工林与天然林土壤养分的对比研究 [J]. 江苏林业科技, 2009, 36(3): 1-4. [GONG S S, LIAO S G. Soil nutrient characteristics in eucalypt plantation and natural forest. Journal of Jiangsu Forestry Science & Technology, 2009, 36(3): 1-4. ] [46] 陈钦程, 徐福利, 王渭玲, 等.秦岭北麓华北落叶松林地土壤有效性钾含量变化 [J]. 植物学报, 2015, 50(4): 482-489. [CHEN Q C, XU F L, WANG W L, et al. Seasonal dynamics in soil content of effective potassium for different ages of Larix principis - rupprechtii in the northern foot of the Qinling Mountains. Chinese Bulletin of Botany, 2015, 50(4): 482-489. ] [47] WANG Q, XIAO F, HE T, et al. Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the subtropics [J]. Annals of Forest Science, 2013, 70(6): 579-587. [48] 王理德, 王方琳, 郭春秀, 等. 土壤酶学硏究进展 [J]. 土壤, 2016, 48(1): 12-21. [WANG L D, WANG F L, GUO C X, et al. Review: Progress of soil enzymology. Soils, 2016, 48(1): 12-21. ] [49] 王莹, 刘淑英, 王平, 等. 不同土地利用方式对秦王川灌区土壤酶活性及土壤养分的影响 [J]. 甘肃农业大学学报, 2013, 48(5): 107-113. [WANG Y, LIU S Y, WANG P, et al. Influence land utilization type on soil nutrients and soil enzyme activitiy in Qinwangchuan irrigation area of Gansu Province. Journal of Gansu Agricultural University, 2013, 48(5): 107-113. ] [50] 宋学贵, 胡庭兴, 鲜骏仁, 等. 川南天然常绿阔叶林土壤酶活性特征及其对模拟N沉降的响应 [J]. 生态学报, 2009, 29(3): 1234-1240. [SONG X G, HU T X, XIAN J R, et al. Soil enzyme activities and its response to simulated nitrogen deposition in an evergreen broad-leaved forest, southern Sichuan. Acta Ecologica Sinica, 2009, 29(3): 1234-1240. ] [51] 王莹, 王彦梅, 陈龙池. 湖南会同地区森林植被转变对土壤微生物生物量碳和酶活性的影响 [J]. 生态学杂志, 2010, 29(5): 905-909. [WANG Y, WANG Y M, CHEN L C. Effects of forest vegetation change on soil microbial biomass carbon and enzyme activities in Huitong, Hunan Province. Chinese Journal of Ecology, 2010, 29(5): 905-909. ] [52] 龚伟, 胡庭兴, 王景燕, 等. 川南天然常绿阔叶林人工更新后土壤碳库与肥力的变化 [J]. 生态学报, 2008, 28(6): 2536-2545. [GONG W, HU T X, WANG J Y, et al. Soil carbon pool and fertility under natural evergreen broad-leaved forest and its artificial regeneration forests in southern Sichuan Province. Acta Ecologica Sinica, 2008, 28(6): 2536-2545. ] [53] 李振高, 骆永明, 滕应. 土壤与环境微生物研究法 [M]. 北京: 科学出版社, 2008. [LI Z G, LUO Y M, TENG Y. Methods of Soil and Environmental Microbiology. Beijing: Science Press, 2008. ] [54] 杜红霞, 刘增文, 潘开文, 等.外源性C、N干扰对森林土壤酶活性的影响 [J]. 西北林学院学报, 2016, 21(2): 35-38. [DU H X, LIU Z W, PAN K W, et al. Effects of external source C, N disturbances on enzymes activities of forest soil. Journal of Northwest Forestry University, 2016, 21(2): 35-38. ] [55] 宋思睿, 烟亚萍, 宣丹娟, 等. 集约经营毛竹林土壤酶活性对模拟氮沉降的初期响应 [J].浙江林业科技, 2015, 35(2): 62-66. [SONG S R, YAN Y P, XUAN D J, et al. Effect of simulated nitrogen deposition on soil enzyme activities in Phyllostachys heterocycla cv. pubescens stand. Journal of Zhejiang Forestry Science and Technology, 2015, 35(2): 62-66. ] [56] GARCIA M, ASCENCIO J. Root morphology and acid phosphatase activity in tomato plants during development of and recovery from phosphorus stress [J]. Journal of Plant Nutrition, 1992, 15(11): 2491-2503. [57] 朱强根, 金爱武, 娄艳华, 等. 施肥对毛竹根系酸性磷酸酶及氮代谢的影响 [J]. 福建林业科技, 2016, 43(1): 30-34. [ZHU Q G, JIN A W, LOU Y H, et al. Effect of fertilization on root acid phosphatase and nitrogen metabolism of Phyllostachys heterocycla cv. pubescens . Journal of Fujian Forestry Science and Technology, 2016, 43(1): 30-34. ] [58] 肖海兵, 李忠武, 聂小东, 等. 南方红壤丘陵区土壤侵蚀-沉积作用对土壤酶活性的影响 [J]. 土壤学报, 2016, 53(4): 881-890. [XIAO H B, LI Z W, NIE X D, et al. Effects of soil erosion and deposition on soil enzyme activity in hilly red soil regions of South China. Acta Pedologica Sinica, 2016, 53(4): 881-890. ] |