[1] GRONDIN P, GAUTHIER S, BORCARD D, et al. A new approach to ecological land classification for the Canadian boreal forest that integrates disturbances [J]. Landscape Ecology, 2014, 29(1): 1-16. [2] FFOLLIOTT P, BROOKS K, GREGERSEN H. Dryland Forestry: Planning and Management [M]. John Wiley and Sons, 1995. [3] 张超, 黄清麟, 朱雪林, 等. 基于ETM+和DEM的西藏灌木林遥感分类技术 [J]. 林业科学, 2011, 47(1): 15-21. [ZHANG C, HUANG Q L, ZHU X L et al. Remote sensing classification technique of Shrub in Tibet based on ETM+ and DEM. Scientia Silvae Sinicae, 2011, 47(1): 15-21. ] [4] 成晓英. 基于特征库的信息提取在森林资源调查中的应用研究 [D]. 武汉: 中国地质大学, 2012. [CHENG X Y. Based on the Characteristics of Library Information Extraction and its Application in Forest Resource Survey Research. Wuhan: China University of Geosciences, 2012. ] [5] GIRI C, ZHU Z, TIESZEN L, et al. Mangrove forest distributions and dynamics (1975-2005) of the tsunami-affected region of Asia [J]. Journal of Biogeography, 2007, 35(3): 519-528. [6] KUEMMERLE T, CHASKOVSKYY O, KNORN J, et al. Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007 [J]. Remote Sensing of Environment, 2009, 113(6): 1194-1207. [7] TOWNSEND P, HELMERS D, KINGDON C, et al. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976-2006 Landsat time series [J]. Remote Sensing of Environment, 2009, 113(1): 62-72. [8] GAVIER-PIZARRO G, KUEMMERLE T, HOYOS L, et al. Monitoring the invasion of an exotic tree ( Ligustrum lucidum ) from 1983 to 2006 with Landsat TM/ETM+ satellite data and support vector machines in Córdoba, Argentina [J]. Remote Sensing of Environment, 2012, 122: 134-145. [9] SINGH S, SRIVASTAVA P, GUPTA M, et al. Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine [J]. Environmental Earth Sciences, 2014, 71(5): 2245-2255. [10] FOODY G, BOYD D, CUTLER M. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions [J]. Remote Sensing of Environment, 2003, 85(4): 463-474. [11] HILL R. Image segmentation for humid tropical forest classification in Landsat TM data [J]. International Journal of Remote Sensing, 1999, 20(5): 1039-1044. [12] SESNIE S E, GESSLER P E, FINEGAN B, et al. Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments [J]. Remote Sensing of Environment, 2008, 112(5): 2145-2159. [13] SADER S A, AHL D, LIOU W S. Accuracy of Landsat-TM and GIS rule-based methods for forest wetland classification in Maine [J]. Remote Sensing of Environment, 1995, 53(3): 133-144. [14] KOVACS J M, LIU Y, ZHANG C, et al. A field based statistical approach for validating a remotely sensed mangrove forest classification scheme [J]. Wetlands Ecology and Management, 2011, 19(5): 409-421. [15] BRANDT J S, KUEMMERLE T, LI H, et al. Using Landsat imagery to map forest change in southwest China in response to the national logging ban and ecotourism development [J]. Remote Sensing of Environment, 2012, 121: 358-369. [16] 陈艳华, 张万昌. 地理信息系统支持下的山区遥感影像决策树分类 [J]. 国土资源遥感, 2006(1): 69-74. [CHEN Y H, ZHANG W C. GIS supported decision tree classification of remote sensing images in mountainous areas. Remote Sensing for Land & Resources, 2006(1): 69-74. ] [17] DORREN L K A, MAIER B, SEIJMONSBERGEN A C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification [J]. Forest Ecology and Management, 2003, 183(1/3): 31-46. [18] 游晓斌, 王蕾. 应用辅助信息提高森林分类和森林区划能力的研究 [J]. 北京林业大学学报, 2003, 25(S1): 41-42. [YOU X B, WANG L. Application of auxiliary information to improve forest classification capability and forest division. Journal of Beijing Forestry University, 2003, 25(S1): 41-42. ] [19] 李纯, 吴俐民, 左小清. 一种基于像元和面向对象的库塘信息提取方法 [J]. 昆明理工大学学报(自然科学版), 2011, 36(1): 7-11. [LI C, WU L M, ZUO X Q. An approach of reservoirs and ponds extraction based on pixels and object-oriented method. Journal of Kunming University of Science and Technology (Natural Science Edition), 2011, 36(1): 7-11. ] [20] 郭亚鸽, 于信芳, 江东, 等. 面向对象的森林植被图像识别分类方法 [J]. 地球信息科学学报, 2012, 14(4): 514-522. [GUO Y G, YU X F, JIANG D, et al. Study on forest classification based on object oriented techniques. Journal of Geo-Information Science, 2012, 14(4): 514-522. ] [21] 马婷婷. 基于最佳尺度的面向对象高分辨率遥感影像分类及应用 [D]. 成都: 西南交通大学, 2012. [MA T T. The Object-oriented Classification and Application of High-resolution Remote Sensing Image Based on the Optimal Scale. Chengdu: Southwest Jiaotong University, 2012. ] [22] 马克平, 陈灵芝, 于顺利, 等. 北京东灵山地区植物群落的基本类型 [M]// 陈灵芝. 暖温带森林生态系统结构与功能的研究 [C]. 北京: 科学出版社, 1997: 56-75. [MA K P, CHEN L Z, YU S L, et al. Basic types of plant community in Donglingshan Mountain, Beijing // CHEN L Z. Study on the Structure and Function of Forest Ecosystem in Warm Temperate Zone. Beijing: Science Press, 1997: 56-75. ] [23] PEKKARINEN A, REITHMAIER L, STROBL P. Pan-European forest/non-forest mapping with Landsat ETM+ and CORINE Land Cover 2000 data [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(2): 171-183. [24] POTAPOV P, TURUBANOVA S, HANSEN M. Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia [J]. Remote Sensing of Environment, 2011, 115(2): 548-561. [25] ZHANG Z, DE WULF R R, VAN COILLIE F M B, et al. Influence of different topographic correction strategies on mountain vegetation classification accuracy in the Lancang Watershed China [J]. Journal of Applied Remote Sensing, 2011, 5(1), 053512. doi:10.1117/1.3569124. [26] HUANG C, DAVIS L, TOWNSHEND J. An assessment of support vector machines for land cover classification [J]. International Journal of Remote Sensing, 2002, 23(4): 725-749. [27] DIXON B, CANDADE N. Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? [J]. International Journal of Remote Sensing, 2008, 29(4): 1185-1206. [28] VAN NOORD H. The Role of Geomorphological Information in Ecological Forest Site Typology in Mountainous Areas: A Methodological Study in the E-Räetikon and NW-Montafon Mountains (Vorarlberg, Austria) [D]. Amsterdam: University of Amsterdam, 1996. [29] 林超, 李昌文. 阴阳坡在山地地理研究中的意义 [J]. 地理学报, 1985, 40(1): 20-28. [LIN C, LI C W. The significance of aspect in mountain geography. Acta Geographica Sinica, 1985, 40(1): 20-28. ] [30] 郭晋平, 张芸香. 森林景观恢复过程中景观要素空间分布格局及其动态研究 [J]. 生态学报, 2002, 11(22): 2022-2029. [GUO J P, ZHANG Y X. Studies on the dynamics and distribution pattern of landscape elements in the forest landscape restoration process in Guandishan Forest region. Acta Ecologica Sinica, 2002, 11(22): 2022-2029. ] [31] 马克明, 傅伯杰, 周华锋. 北京东灵山地区森林的物种多样性和景观格局多样性研究 [J]. 生态学报, 1999, 19(1): 1-7. [MA K M, FU B J, ZHOU H F. Studies on species and pattern diversities of the forest landscapes of Donglingshan Mountain region, Beijing, China. Acta Ecologica Sinica, 1999, 19(1): 1-7. ] [32] 章皖秋, 李先华, 罗庆州, 等. 基于RS, GIS 的天目山自然保护区植被空间分布规律研究 [J]. 生态学杂志, 2003, 22(6): 21-27. [ZHANG W Q, LI X H, LUO Q Z, et al. Spatial distribution of vegetation in Tianmu Mountain Nature Reserve based on RS and GIS data. Chinese Journal of Ecology, 2003, 22(6): 21-27. ] [33] 竞霞, 王锦地, 王纪华, 等. 基于分区和多时相遥感数据的山区植被分类研究 [J]. 遥感技术与应用, 2008, 23(4): 394-397. [JING X, WANG J D, WANG J H, et al. Classifying forest vegetation using sub-region classification based on multi-temporal remote sensing images. Remote Sensing Technology and Application, 2008, 23(4): 394-397. ] [34] 莫源富, 周立新. 分区分类法针对山区遥感图像的一种有效的分类方法 [J]. 中国岩溶, 2000, 19(4): 360-365. [MO Y F, ZHOU L X. Sub-region classification method—A new classification method to remote sensing image in mountain areas. Carsologica Sinica, 2000, 19(4): 360-365. ] [35] 刘健, 许章华, 余坤勇, 等. 山地丘陵区遥感影像阴影检测与去除方法 [J]. 农业机械学报, 2013, 44(10): 238-241. [LIU J, XU Z H, YU K Y, et al. Shadow detection and removal method for remote sensing image in mountainous and hilly area. Transactions fo the CSAM, 2013, 44(10): 238-241. ] [36] YU Q, GONG P, CLINTON N, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery [J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(7): 799-811. [37] GAO Y, MAS J. A comparison of the performance of pixel based and object based classifications over images with various spatial resolutions [J]. Online Journal of Earth Sciences, 2008, 2(1): 27-35. [38] 牟智慧, 杨广斌. 基于TM影像面向对象的桉树信息提取 [J]. 林业资源管理, 2014(2): 119-125. [MOU Z H, YANG G B. The extraction of Eucalyptus information based on TM data using object-oriented method. Forest Resources Management, 2014(2): 119-125. ] [39] 李秀瑞, 孙林, 朱金山, 等. 多尺度遥感数据协同的干旱地区植被覆盖度提取 [J]. 生态学杂志, 2016, 35(5): 1394-1402. [LI X R, SUN L, ZHU J S, et al. Extraction of vegetation coverage in arid regions using multi-scale remote sensing data synergistically. Chinese Journal of Ecology, 2016, 35(5): 1394-1402. ] |