[1] IPCC. Climate change 2013: The Physical Science Basis [M]. Cambridge: Cambridge University Press, 2013: 4-10, 335-344.
[2] FISCHER A. Glaciers and climate change: Interpretation of 50 years of direct mass balance of hintereisferner [J]. Global and Planetary Change, 2010, 71(1): 13-26.
[3] 沈永平, 苏宏超, 王亚国, 等. 新疆冰川、积雪对气候变化的响应 (I): 水文效应 [J]. 冰川冻土, 2013, 35(3): 513-527. [SHEN Y P, SU H C, WANG G Y, et al. The responses of glaciers and snow cover to climate chang in Xinjing (I): Hydrological effect. Journal of Glaciology and Geocrylogy, 2013, 35(3): 513-527. ]
[4] 李忠勤, 李开明, 王林. 新疆冰川近期变化对水资源的影响研究 [J]. 第四纪研究, 2010, 30(1): 96-106. [LI Z Q,LI K M, WANG L. Study on recent glacier changes and their impact on water resources in Xinjiang, northwestern China. Quaternary Sciences, 2010, 30(1): 96-106. ]
[5] 刘潮海, 谢自楚, 王纯足. 天山乌鲁木齐河源1号冰川物质平衡过程研究 [J]. 冰川冻土, 1997, 19(1): 14-24. [LIU C H, XIE Z C, WANG C Z. A research on the mass balance processes of Glacier No.1 at the headwaters of the Urumqi River, Tianshan Mountains. Journal of Glaciology and Geocrylogy, 1997, 19(1): 17-24. ]
[6] NECKEL N, KROPÁ?EK J, BOLCH T, et al. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements [J]. Environmental Research Letters, 2014, 9(1): 014009.
[7] NECKEL N, BRAUN A, KROPÁ?EK J, et al. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry [J]. The Cryosphere, 2013, 7(5): 1623-1633.
[8] JANKE J R. Using airborne LiDAR and USGS DEM data for assessing rock glaciers and glaciers [J]. Geomorphology, 2013, 195: 118-130.
[9] 赖旭东. 机载激光雷达基础原理与应用 [M]. 北京: 电子工业出版社, 2010: 37-54, 169-172. [LAI X D. Fundamentals and Applications of Airborne LiDAR. Beijing: Publishing House of Electronics Industry, 2010: 37-54, 169-172. ]
[10] 李新, 刘绍民, 马明国, 等. 黑河流域生态-水文过程综合遥感观测联合试验总体设计 [J]. 地球科学进展, 2012, 27(5): 481-498. [LI X, LIU S L, MA M G, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin. Advances in Earth Science, 2012, 27(5): 481-498. ]
[11] VAN ZYL J J. The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography [J]. Acta Astronautica, 2001, 48: 559-565.
[12] BERTHIER E, ARNAUD Y, VINCENT C, et al. Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes [J]. Geophysical Research Letters, 2006, 33(8), L08502. doi:10.1029/2006GL025862.
[13] THIBERT E, BLANC R, VINCENT C, et al. Instruments and Methods Glaciological and volumetric mass-balance measurements: Error analysis over 51 years for Glacier de Sarennes, French Alps [J]. Journal of Glaciology, 2008, 54(186): 522-532.
[14] FISCHER A. Comparison of direct and geodetic mass balances on a multi-annual time scale [J]. The Cryosphere, 2010, 5(1): 107-124.
[15] KILIAN J, HAALA N, ENGLICH M. DEM generation from laser scanner data using adaptive tin models [J]. International Archives of Photogrammetry and Remote Sensing, 1996, 31: 383-388.
[16] NUTH C, KÄÄB A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change [J]. The Cryosphere, 2011, 5(1): 271.
[17] PAUL F. Calculation of glacier elevation changes with SRTM: Is there an elevation-dependent bias? [J]. Journal of Glaciology, 2008, 54: 945-946.
[18] GARDELLE J, BERTHIER E, ARNAUD Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing [J]. Journal of Glaciology, 2012, 58(208): 419-422.
[19] RAUP B, BACOVITEANU A, KHALSA S J S, et al. The GLIMS geospatial glacier database: A new tool for studying glacier change [J]. Global and Planetary Change, 2007, 56(1): 101-110.
[20] ZEMP M, THIBERT E, HUSS M, et al. Uncertainties and re-analysis of glacier mass balance measurements [J]. Cryosphere Discussions, 2013, 7(2): 789-839.
[21] ZEMP M, JANSSON P, HOLMLUND P, et al. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959-99)—Part 2: Comparison of glaciological and volumetric mass balances [J]. The Cryosphere, 2010, 4(3): 345-357.
[22] HUSS M. Density assumptions for converting geodetic glacier volume change to mass change [J]. The Cryosphere, 2013, 7(3): 877-887.
[23] BOLCH T, PIECZONKA T, BENN D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery [J]. The Cryosphere, 2011, 5(2): 349-358.
[24] KOBLET T, GÄRTNER-ROER I, ZEMP M, et al. Reanalysis of multi-temporal aerial images of Storglaciren, Sweden (1959-99)—Part 1: Determination of length, area, and volume changes [J]. The Cryosphere, 2010, 4(3): 333-343.
[25] 李忠勤. 天山乌鲁木齐河源1号冰川近期研究与应用 [M]. 北京: 气象出版社, 2011: 1-2, 9-11. [LI Z Q. Progress and Application of Research on Glacier No.1 at Headwaters of Urumqi River, Tianshan, China. Beijing: China Meteorological Press, 2011: 1-2, 9-11. ]
[26] 蒲健辰, 姚檀栋, 段克勤. 祁连山七一冰川物质平衡的最新观测结果 [J]. 冰川冻土, 2005, 27(2): 199-204. [PU J C, YAO T D, DUAN K Q, et al. Mass balance of the Qiyi Glacier in the Qilian Mountains: A new observation. Journal of Glaciology and Geocrylogy, 2005, 27(2): 199-204. ]
[27] SHANGGUAN D H, LIU S Y, DING Y J, et al. Changes in the elevation and extent of two glaciers along the Yanglonghe River, Qilian Shan, China [J]. Journal of Glaciology, 2010, 56(196): 309-317.
[28] 李忠勤, 沈永平, 王飞腾, 等. 冰川消融对气候变化的响应——以乌鲁木齐河源1号冰川为例 [J]. 冰川冻土, 2007, 29(3): 333-342. [LI Z Q, SHEN Y P, WANG F T, et al. Response of glacier melting to climate change—Taking Urumqi Glacier No.1 as an example. Journal of Glaciology and Geocrylogy, 2007, 29(3): 333-342. ]
[29] 王卫东, 张国飞, 李忠勤. 近52 a天山乌鲁木齐河源1号冰川平衡线高度及其与气候变化关系研究 [J]. 自然资源学报, 2015, 30(1): 124-132. [WANG W D, ZHANG G F, LI Z Q. Study on equilibrium line altitude and its relationship with climate change of Urumqi Glacier No.1 in Tianshan Mountains in recent 52 years. Journal of Natural Resources, 2015, 30(1): 124-132. ]
[30] 王海军, 张勃, 靳晓华, 等. 基于GIS的祁连山区气温和降水的时空变化分析 [J]. 中国沙漠, 2009, 29(6): 1196-1202. [WANG H J, ZHANG B, JIN X H, et al. Spatio-temporal variation analysis of air temperature and precipitation in Qilian mountainous region based on GIS. Journal of Desert Research, 2009, 29(6): 1196-1202. ]
[31] 张耀宗, 张勃, 刘艳艳, 等. 近半个世纪以来祁连山区气温与降水变化的时空特征分析 [J]. 干旱区资源与环境, 2009, 23(4): 125-130. [ZHANG Y Z, ZHANG B, LIU Y Y, et al. Variation characteristics of air temperature and precipitation in Mt Qilian region in recent half century. Journal of Arid Land Resources and Environment, 2009, 23(4): 125-130. ]
[32] OERLEMANS J. Extracting a climate signal from 169 glacier records [J]. Science, 2005, 308(5722): 675-677. |