[1] LIANG S. Quantitative Remote Sensing of Land Surfaces [M]. New Jersey: John Wiley & Sons, 2004: 79-82. [2] BRUNIQUEL P V, GASTELLU E J P. Sensitivity of texture of high resolution images of forest to biophysical and acquisition parameters [J]. Remote Sensing of Environment, 1998, 65(1): 61-85. [3] COLOMBO R, BELLINGERI D, FASOLINI D. Retrieval of leaf area index in different vegetation types using high resolution satellite data [J]. Remote Sensing of Environment, 2003, 86(1): 120-131. [4] JOHANSEN K, PHINN S. Linking riparian vegetation spatial structure in Australian tropical savannas to ecosystem health indicators: Semi-variogram analysis of high spatial resolution satellite imagery [J]. Canadian Journal of Remote Sensing, 2006, 32(3): 228-243. [5] PASHER J, KING D J, LINDSAY K. Modelling and mapping potential hooded warbler ( Wilsonia citrina ) habitat using remotely sensed imagery [J]. Remote Sensing of Environment, 2007, 107(3): 471-483. [6] SEED E D, KING D J. Shadow brightness and shadow fraction relations with effective LAI: Importance of canopy closure and view angle in mixed wood boreal forest [J]. Canadian Journal of Remote Sensing, 2003, 29(3): 324-335. [7] LÉVESQUE J, KING D J. Spatial analysis of radiometric fractions from high resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health [J]. Remote Sensing of Environment, 2003, 84(4): 589-602. [8] SONG C, DICKINSON M B. Extracting forest canopy structure from spatial information of high resolution optical imagery: Tree crown size versus leaf area index [J]. International Journal of Remote Sensing, 2008, 29(19): 5605-5622. [9] WULDER M, FRANKLIN S, LAVIGNE M. High spatial resolution optical image texture for improved estimation of forest stand leaf area index [J]. Canadian Journal of Remote Sensing, 1996, 22(4): 441-449. [10] 胡庭兴. 西南山地森林生态系统研究 [M]. 北京: 科学出版社, 2011: 3-10. [HU T X. Study on Montane Forest Ecosystems in Southwest China. Beijing: Science Press, 2011: 3-10. ] [11] 赵安玖, 胡庭兴, 陈小红. 西南山地阔叶混交林群落空间结构的多尺度特征 [J]. 生物多样性, 2009, 17(1): 43-50. [ZHAO A J,HU T X,CHEN X H. Multiple-scale spatial analysis of community structure in a mountainous mixed evergreen-deciduous broad-leaved forest, Southwest China. Biodiversity Science, 2009, 17(1): 43-50. ] [12] 赵安玖, 陈昆, 郭世刚. 基于不同空间插值模型的川西南山地常绿阔叶林叶面积指数估测 [J]. 自然资源学报, 2014, 29(4): 598-609. [ZHAO A J, CHEN K, GUO S G. Estimation LAI of montane evergreen broad-leaved forest in southwest Sichuan using different spatial prediction models. Journal of Natural Resources, 2014, 29(4): 598-609. ] [13] 赵安玖, 杨长青, 廖成云. 基于影像纹理特征的川西南山地常绿阔叶林有效叶面积指数的空间分析 [J]. 应用生态学报, 2014, 25(11): 3237-3246. [ZHAO A J, YANG C Q, LIAO C Y. Spatial analysis of LAIe of montane evergreen broad-leaved forest in southwest Sichuan, Northwest China, based on image texture. Chinese Journal of Applied Ecology, 2014, 25(11): 3237-3246. ] [14] CHEN J M. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands [J]. Agricultural and Forest Meteorology, 1996, 80: 135-163. [15] QI J, CHEHBOUNI A, HUETE A R. A modified soil adjusted vegetation index [J]. Remote Sensing of Environment, 1994, 48(2): 119-126. [16] GOEL N S, QIN W. Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation [J]. Remote Sensing Reviews, 1994, 10(4): 309-347. [17] KAUFMAN Y J, TANRE D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 261-270. [18] KAYITAKIRE F, HAMEL C, DEFOURNY P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery [J]. Remote Sensing of Environment, 2006, 102: 390-401 [19] ZHENG D, RADEMACHER J, CHEN J, et al. Estimating aboveground biomass using Landsat 7 ETM+data across a managed landscape in northern Wisconsin, USA [J]. Remote Sensing of Environment, 2004, 93(3): 402-411. [20] DOUGLAS C M, PECK E A, VINING G G. Introduction to Linear Regression Analysis [M]. The Fourth Edition. New Jersey: Wiley & Sons publication, 2006: 323-368. [21] HYDE P, NELSON R, DAN K, et al. Exploring LiDAR-RaDAR synergy—Predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR [J]. Remote Sensing of Environment, 2007, 106(1): 28-38. [22] THENKABAIL P S, STUCKY N, GRISCOM B W, et al. Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data [J]. International Journal of Remote Sensing, 2004, 25(23): 5447-5472. [23] JENSEN J R. Remote Sensing of the Environment: An Earth Resource Perspective [M]. Upper Saddle River, New Jersey: Prentice-Hall Inc., 2000: 35-42. [24] SARKER L R, NICHOL J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices [J]. Remote Sensing of Environment, 2011, 115(4): 968-977. [25] SCHULZE E D. Plant life forms as related to plant carbon, water and nutrient relations [M]// Encyclopedia of Plant Physiology, vol 12B. Berlin Heidelberg New York: Springer, 1982: 615-676. [26] ASNER G P. Biophysical and biochemical sources of variability in canopy reflectance [J]. Remote Sensing of Environment 1998, 64: 234-253. [27] ASNER G P, SCURLOCK J M O, HICKE J A. Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies [J]. Global Ecology and Biogeography, 2003, 12: 191-205. [28] LARCHER W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups [M]. The Fourth Edition. Berlin: Springer-Verlag, 2003: 513. [29] IBRAHIM O, ARNON K. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel [J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13: 701-710. [30] FUCHS H, MAGDON P, KLEINN C, et al. Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory [J]. Remote Sensing of Environment, 2009, 113(3): 518-531. [31] LU D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon [J]. International Journal of Remote Sensing, 2005, 26(12): 2509-2525. [32] LIAO S, MAX W K, ALBERT C S. Dominant local binary patterns for texture classification [J]. IEEE Transactions on Image Processing, 2009, 18(5): 1107-1118. [33] BOEGH E, BROGE H S N, HASAGER C B, et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture [J]. Remote Sensing of Environment, 2002, 81: 179-193. [34] FRANKLIN S E, HALL R J, MOSKAL L M, et al. Incorporating texture into classification of forest species composition from airborne multispectral images [J]. International Journal of Remote Sensing, 2000, 21: 61-79. [35] BOYD D S, DANSON F M. Satellite remote sensing of forest resources: Three decades of research development [J]. Progress in Physical Geography, 2005, 29: 1-26. [36] HAY G J, NIEMANN K O, MCLEAN G F. An object-specific image texture analysis of H-resolution forest imagery [J]. Remote Sensing of Environment, 1996, 55: 108-122. [37] TUOMINEN S, PEKKARINEN A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory [J]. Remote Sensing of Environment, 2005, 94: 256-268. [38] PESARESI M. Texture analysis for urban pattern recognition using fine resolution panchromatic satellite imagery [J]. Geographical and Environmental Modelling, 2000, 4(1): 43-63. [39] FRANKLIN S E. Remote Sensing for Sustainable Forest Management [M]. LEWIS Publication, 2001: 7-11. [40] FRANKLIN S E, WULDER M A, LAVIGNE M B. Automated derivation of geographic window sizes for remote sensing digital image texture analysis [J]. Computers and Geosciences, 1996, 22: 665-673. |