自然资源学报 ›› 2016, Vol. 31 ›› Issue (10): 1773-1782.doi: 10.11849/zrzyxb.20151259

• 资源研究方法 • 上一篇    下一篇

基于地理回归的农作物播种面积统计数据空间化方法

夏天1, 2, 吴文斌2*, *, 周清波2, 周勇1, 罗静1, 杨鹏2, 李正国2   

  1. 1. 地理过程分析与模拟湖北省重点实验室/华中师范大学城市与环境科学学院,武汉 430079;
    2. 农业部农业信息技术重点实验室/中国农业科学院农业资源与农业区划研究所,北京 100081
  • 收稿日期:2015-11-16 修回日期:2016-03-01 出版日期:2016-10-20 发布日期:2016-10-20
  • 通讯作者: 吴文斌(1977- ),男,湖北省潜江市人,研究员,中国自然资源学会会员(S300001617M),主要从事农业遥感基础与应用基础、空间建模理论与技术和农业生态系统对全球变化响应与反馈评估等方面的研究工作。E-mail:wuwenbin@caas.cn
  • 作者简介:夏天(1981- ),男,湖北省武汉市人,副教授,中国自然资源学会会员(S300001719M),主要从事农业定量遥感、土地资源与环境遥感和空间模型等方面的研究工作。E-mail:xiatian@mail.ccnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41201089,41271112); 中央高校科研基本业务费(CCNU15A05058)

Spatialization of Statistical Crop Planting Area Based on Geographical Regression

XIA Tian1, 2, WU Wen-bin2, ZHOU Qing-bo2, ZHOU Yong1, LUO Jing1, YANG Peng2, LI Zheng-guo2   

  1. 1. Key Laboratory for Geographical Process Analysis & Simulation, Hubei Province/ College of Urban & Environmental Science, Central China Normal University, Wuhan 430079, China;
    2. Key Laboratory of Agri-Informatics, Ministry of Agriculture / Institute of Agricultural Resources and RegionalPlanning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2015-11-16 Revised:2016-03-01 Online:2016-10-20 Published:2016-10-20
  • Supported by:
    National Natural Science Foundation of China, No.41201089 and 41271112; Fundamental Research Funds for the Central Universities, No.CCNU15A05058

摘要: 农作物空间格局反映了农作物种植结构和特征,是了解生产资源利用状况及进行农业结构调整的重要依据。研究旨在探索农作物播种面积统计数据空间化的方法,实现对历史农业统计数据的空间化表达。将传统的农业统计调查与先进的遥感技术、空间地理信息技术相结合,通过多元Logistic回归分析农作物格局与自然地理因素和社会经济因素之间的关系,构建农作物空间适宜性分布概率,在此基础上将农作物播种面积统计数据利用空间迭代分配方法,实现统计数据空间化的研究。论文选取中国东北三省作为方法研究区,实现了对该地区2000—2010年农作物播种面积空间化表达,经检验,该方法对东北三省水稻空间化精度为0.76,能够较好地完成农作物时空播种面积统计数据空间化工作。该方法是农作物调查和遥感时空格局解译研究的有效补充,为丰富农作物空间数据提供了技术手段。

关键词: 播种面积, 地理回归, 空间化, 农作物, 统计数据

Abstract: The sptial pattern of crops reflects the planting structure and characteristics of crops, which is an important basis for understanding agricultural resource utilization and adjusting crop planting structure. This study aims to explore the method for specializing statistical data of crop planting area, and thus spatially express historial agricultural statistics data. This study used the traditional agricultural statistical survey data and remote sensing imagery data with geographic information technologies. The spatial probability distributions of suitabilities of crops are estimated using the Binary Logistic regression analysis that characterizes the relationships between the crop planting structure and the geographical factors as well as social-economic factors. Based on the spatial probability distribution, the statistical data of crop planting area were spatially distributed by using spatial iteratative allocation. Northeast China was taken as the study area and the spatial expression of sown area in this area during 2000-2010 was completed. The spatial accuracy of 0.76 was achieved by using this multi-scale and multi-resolution analysis method, which demonstrated it is superior in spatially expressing statistical data of crop planting. The method can be taken as an effective complement for crop field survey and remote sensing-based crop interpretation, and thus provides novel technical means for enriching crop spatial data.

Key words: crop, geographical regression, planting area, spatialization, statistical data

中图分类号: 

  • F302.5