[1] FISCHER R A, TURNER N C. Plant productivity in the arid and semiarid zones [J]. Annual Review of Plant Physiology, 1978, 29(1): 277-317. [2] 张良侠, 胡中民, 樊江文, 等. 区域尺度生态系统水分利用效率的时空变异特征研究进展 [J]. 地球科学进展, 2014, 29(6): 691-699.
[3] MARTIN B, THORSTENSON Y R. Stable carbon isotope composition (δ 13 C), water use efficiency, and biomass productivity of Lycopersicon esculentum , Lycopersicon pennellii , and the F1 hybrid [J]. Plant Physiology, 1988, 88(1): 213-217. [4] KOZLOWSKI T T, KRAMER P J, PALLARDY S G. The physiological ecology of woody plants [J]. Tree Physiology, 1991, 8(2): 213. [5] TIAN H, CHEN G, LIU M, et al. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007 [J]. Forest Ecology and Management, 2010, 259(7): 1311-1327. [6] TIAN H, LU C, CHEN G, et al. Climate and land use controls over terrestrial water use efficiency in monsoon Asia [J]. Ecohydrology, 2011, 4: 322-340. [7] VANLOOCKE A, TWINE T E, ZERI M, et al. A regional comparison of water use efficiency for miscanthus, switchgrass and maize [J]. Agricultural and Forest Meteorology, 2012, 164: 82-95. [8] MO X, LIU S, LIN Z, et al. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain [J]. Agriculture, Ecosystems & Environment, 2009, 134(1): 67-78. [9] 莫兴国, 刘苏峡, 林忠辉, 等. 华北平原蒸散和 GPP 格局及其对气候波动的响应 [J]. 地理学报, 2011, 66(5): 589-598.
[10] 卢玲, 李新, 黄春林. 中国西部植被水分利用效率的时空特征分析 [J]. 冰川冻土, 2007, 29(5): 777-784.
[11] 徐晓桃. 黄河源区NPP及植被水分利用效率时空特征分析 [D]. 兰州: 兰州大学, 2008.
[12] 张春敏, 梁川, 龙训建, 等. 江河源区植被水分利用效率遥感估算及动态变化 [J]. 农业工程学报, 2013, 29(18): 146-155.
[13] JIANG L, ISLAM S. Estimation of surface evaporation map over southern Great Plains using remote sensing data [J]. Water Resources Research, 2001, 37(2): 329-340. [14] BATRA N, ISLAM S, VENTURINI V, et al. Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains [J]. Remote Sensing of Environment, 2006, 103(1): 1-15. [15] JIANG L, ISLAM S, GUO W, et al. A satellite-based daily actual evapotranspiration estimation algorithm over South Florida [J]. Global and Planetary Change, 2009, 67(1): 62-77. [16] 赵晓松, 刘元波, 吴桂平. 基于遥感的2000—2009年鄱阳湖流域蒸散特征及影响因子研究 [J]. 长江流域资源与环境, 2013, 22(3): 369-378.
[17] 赵安周, 朱秀芳, 刘宪锋, 等. 1965—2013 年渭河流域降水时空变化分析 [J]. 自然资源学报, 2015, 30(11): 1896-1909.
[18] POTTER C S, RANDERSON J T, FIELD C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data [J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841. [19] FIELD C B, RANDERSON J T, MALMSTRÖM C M. Global net primary production: Combining ecology and remote sensing [J]. Remote Sensing of Environment, 1995, 51(1): 74-88. [20] 朱文泉. 中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究 [D]. 北京: 北京师范大学, 2005.
[21] XIAO X, ZHANG Q, SALESKA S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest [J]. Remote Sensing of Environment, 2005, 94(1): 105-122. [22] XIAO X, HOLLINGER D, ABER J, et al. Satellite-based modeling of gross primary production in an evergreen needle leaf forest [J]. Remote Sensing of Environment, 2004, 89(4): 519-534. [23] JIANG L, ISLAM S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations [J]. Geophysical Research Letters, 1999, 26(17): 2773-2776. [24] LIANG S, SHUEY C J, RUSS A L, et al. Narrowband to broadband conversions of land surface albedo: II. Validation [J]. Remote Sensing of Environment, 2003, 84(1): 25-41. [25] RUSHTON K R, WARD C. The estimation of groundwater recharge [J]. Journal of Hydrology, 1979, 41(3): 345-361. [26] MORAN M S, JACKSON R D, RAYMOND L H, et al. Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data [J]. Remote Sensing of Environment, 1989, 30(1): 77-87. [27] 李贵才. 基于 MODIS 数据和光能利用率模型的中国陆地净初级生产力估算研究 [D]. 北京: 中国科学院研究生院, 2004.
[28] 陶波, 李克让, 邵雪梅. 中国陆地净初级生产力时空特征模拟 [J]. 地理学报, 2003, 58(3): 372-380.
[29] 孙睿, 朱启疆. 中国陆地植被净第一性生产力及季节变化研究 [J]. 地理学报, 2000, 55(1): 36-45.
[30] PRINCE S D, HASKETT J, STEININGER M, et al. Net primary production of US midwest croplands from agricultural harvest yield data [J]. Ecological Applications, 2001, 11(4): 1194-1205. [31] 位贺杰, 张艳芳, 朱妮, 等. 基于MOD16数据的渭河流域地表实际蒸散发时空特征 [J]. 中国沙漠, 2015, 35(2): 414-422.
[32] LAW B E, FALGE E, GU L, et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation [J]. Agricultural and Forest Meteorology, 2002, 113(1): 97-120. [33] ITO A, INATOMI M. Water-use efficiency of the terrestrial biosphere: A model analysis focusing on interactions between the global carbon and water cycles [J]. Journal of Hydrometeorology, 2012, 13(2): 681-694. [34] ZHU Q, JIANG H, PENG C, et al. Evaluating the effects of future climate change and elevated CO 2 on the water use efficiency in terrestrial ecosystems of China [J]. Ecological Modelling, 2011, 222(14): 2414-2429. [35] ZHANG Z, JIANG H, LIU J, et al. Modeling the spatial-temporal dynamics of water use efficiency in Yangtze River Basin using IBIS model [J]. Acta Ecologica Sinica, 2011, 31(5): 246-253. [36] KUGLITSCH F G, REICHSTEIN M, BEER C, et al. Characterization of ecosystem water-use efficiency of European forests from eddy covariance measurements [J]. Biogeosciences Discussions, 2008, 5(6): 4481-4519. [37] HU Z, YU G, FU Y, et al. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China [J]. Global Change Biology, 2008, 14(7): 1609-1619. [38] WEVER L A, FLANAGAN L B, CARLSON P J. Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland [J]. Agricultural and Forest Meteorology, 2002, 112(1): 31-49. [39] 国志兴, 王宗明, 刘殿伟, 等. 三江平原农田生产力时空特征分析 [J]. 农业工程学报, 2009, 25(1): 249-254.
[40] 徐浩杰, 杨太保. 黄河源区植被净初级生产力时空变化特征及其对气候要素的响应 [J]. 资源科学, 2013, 35(10): 2024-2031.
[41] 徐永明, 赵巧华, 巴雅尔, 等. 基于 MODIS 数据的博斯腾湖流域地表蒸散时空变化 [J]. 地理科学, 2012, 32(11): 1353-1357.
|