[1] SAKAMOTO T, YOKOZAWA M, TORITANIH H, et al. A crop phenology detection method using time-series MODIS data [J]. Remote Sensing of Environment, 2005, 96(3): 366-374. [2] ZHANG X Y, FRIEDL M A, SCHAAF C B, et al. Monitoring vegetation phenology using MODIS [J]. Remote Sensing of Environment, 2003, 84(3): 471-475. [3] 闫慧敏, 肖向明, 黄河清. 黄淮海多熟种植农业区作物历遥感检测与时空特征 [J]. 生态学报, 2010, 9(9): 2416-2423.
[4] PENG Y, GITELSON A A, KEYDAN G, et al. Remote estimation of gross primary production in maize and support for a new paradigm based on total crop chlorophyll content [J]. Remote Sensing of Environment, 2011, 115(4): 978-989. [5] PENG Y, GITELSON A A. Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content [J]. Remote Sensing of Environment, 2011, 117(1): 440-448. [6] WU C Y, NIU Z, GAO S. Gross primary production estimation from MODIS data with vegetation index and photosynthetically active radiation in maize [J]. Journal of Geophysical Research Atmospheres, 2010, 115(D12): 1256-1268. [7] 赵晶晶, 刘良云, 徐自为, 等. 华北平原冬小麦总初级生产力的遥感监测 [J]. 农业工程学报, 2011, 27(13): 346-351.
[8] YAN H M, FU Y L, XIAO X M, et al. Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO 2 eddy flux tower data [J]. Agriculture, Ecosystems & Environment, 2009, 129(4): 391-400. [9] 胡波, 孙睿, 陈永俊, 等. 遥感数据结合Biome-BGC模型估算黄淮海地区生态系统生产力 [J]. 自然资源学报, 2011, 26(12): 2061-2071.
[10] 王宗明, 国志兴, 宋开山, 等. 2000—2005年三江平原土地利用/覆被变化对植被净初级生产力的影响研究 [J]. 自然资源学报, 2009, 24(1): 136-146.
[11] GITELSON A A, PENG Y, MASEK J G, et al. Remote estimation of crop gross primary production with Landsat data [J]. Remote Sensing of Environment, 2012, 121(6): 404-414. [12] TAO F L, YOKOZAWA M, ZHANG Z, et al. Remote sensing of crop production in China by production efficiency models: Models comparisons, estimates and uncertainties [J]. Ecological Modelling, 2005, 183(4): 385-396. [13] MATSUSHITA B, TAMURA M. Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia [J]. Remote Sensing of Environment, 2002, 81(1): 58-66. [14] FENG X, LIU G, CHEN J M, et al. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing [J]. Journal of Environmental Management, 2007, 85(3): 563-573. [15] 邬明权, 牛铮, 王长耀. 多源遥感数据时空融合模型应用分析 [J]. 地球信息科学学报, 2014, 5(5): 776-783.
[16] GAO F, MASEK J, SCHWALLER M, et al. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2207-2218. [17] 陈正华, 麻清源, 王建, 等. 利用CASA模型估算黑河流域净第一性生产力 [J]. 自然资源学报, 2008, 23(2): 263-273.
[18] 苏伟, 刘睿, 孙中平, 等. 基于SEBAL模型的农作物NPP反演 [J]. 农业机械学报, 2014, 45(11): 272-279.
[19] ZHUKOV B, OERTEL D, LANZL F, et al. Unmixing-based multisensor multiresolution image fusion [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1212-1226. [20] MASELLI F. Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses [J]. Remote Sensing of Environment, 2001, 75(1): 29-38. [21] SINGH D. Generation and evaluation of gross primary productivity using Landsat data through blending with MODIS data [J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(1): 59-69. [22] 黄登成, 张丽, 尹晓利, 等. 数据融合技术在提高 NPP 估算精度中的应用 [J]. 计算机工程与应用, 2014, 50(22): 193-198.
[23] ZHU X L, CHEN J, GAO F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions [J]. Remote Sensing of Environment, 2010, 114(11): 2610-2623. [24] WANG Z, XIAO X M, YAN X D. Modeling gross primary production of maize cropland and degraded grassland in northeastern China [J]. Agricultural and Forest Meteorology, 2010, 150(9): 1160-1167. [25] ZHANG Y Q, YU Q, JIANG J, et al. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau [J]. Global Change Biology, 2008, 14(4): 757-767. [26] WANG H S, JIA G S, FU C B, et al. Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling [J]. Remote Sensing of Environment, 2010, 114(10): 2248-2258. [27] XIAO X M, HOLLINGER D, ABER J, et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest [J]. Remote Sensing of Environment, 2004, 89(4): 519-534. [28] XIAO X M, ZHANG Q Y, BRASWELL B, et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data [J]. Remote Sensing of Environment, 2004, 91(2): 256-270. [29] MONTEITH J L. Solar radiation and productivity in tropical ecosystems [J]. Journal of Applied Ecology, 1972, 9(3): 747-766. [30] MONTEITH J L. Climate and the Efficiency of Crop Production in Britain [J]. Royal Society of London Philosophical Transactions, 1977, 281(980): 277-294. [31] RAICH J W, RASTETTER E B, MELILLO J M, et al. Potential net primary productivity in South America: Application of a global model [J]. Ecological Applications, 1991, 1(4): 399-429. [32] 陈静清, 闫慧敏, 王绍强, 等. 中国陆地生态系统总初级生产力VPM遥感模型估算 [J]. 第四纪研究, 2014, 34(4): 732-742.
[33] HE M Z, ZHOU Y L, LIU G H, et al. Validation of MODIS gross primary productivity for a subtropical coniferous plantation in southern China [C]. The 18th International Conference on Geoinformatics: GIScience in Change, Geoinformatics 2010. Beijing, China: Peking University, 2010: 1-4. [34] THENKABAIL P S, WARD A D, LYON J G. Landsat-5 Thematic Mapper models of soybean and corn crop characteristics [J]. Remote Sensing, 1994, 15(1): 49-61. [35] WANG X F, MA M G, HUANG G H, et al. Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin, China [J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 17(7): 94-101. [36] PRADHAN S. Crop area estimation using GIS, remote sensing and area frame sampling [J]. International Journal of Applied Earth Observation and Geoinformation, 2001, 3(1): 86-92. [37] 黄青, 李丹丹, 陈仲新, 等. 基于MODIS数据的冬小麦种植面积快速提取与长势监测 [J]. 农业机械学报, 2012, 43(7): 163-167.
[38] TENNAKOON S B, EIUMNOH V V N. Estimation of cropped area and grain yield of rice using remote sensing data [J]. International Journal of Remote Sensing, 1992, 13(3): 407-439. [39] 徐新刚, 王纪华, 黄文江, 等. 基于权重最优组合和多时相遥感的作物估产 [J]. 农业工程学报, 2009, 9(9): 137-142.
[40] 赵春江. 农业遥感研究与应用进展 [J]. 农业机械学报, 2014, 45(12): 277-293.
[41] TURNER D P, GOWER S T, COHEN W B, et al. Effects of spatial variability in light use efficiency on satellite-based NPP monitoring [J]. Remote Sensing of Environment, 2002, 80(3): 397-405. [42] BASTIAANSSEN W, ALI S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan [J]. Agriculture Ecosystems & Environment, 2003, 94(3): 321-340. [43] MORIONDO M, MASELLI F, BINDI M. A simple model of regional wheat yield based on NDVI data [J]. European Journal of Agronomy, 2007, 26(3): 266-274. [44] SHEN S H, YANG S B, LI B B, et al. A scheme for regional rice yield estimation using ENVISAT ASAR data [J]. Science in China, 2009, 52(8): 1183-1194. [45] 任建强, 陈仲新, 周清波, 等. MODIS植被指数的美国玉米单产遥感估测 [J]. 遥感学报, 2015, 19(4): 568-577.
|