[1] 戴洪刚, 梁虹, 杨秀英, 等. 枯水径流研究综述 [J]. 水科学与工程技术, 2006(5): 1-4.
[2] 殷福才, 王在高, 梁虹. 枯水研究进展 [J]. 水科学进展, 2004, 15(2): 249-254.
[3] SMAKHTIN V U. Low flow hydrology: A review [J]. Journal of Hydrology, 2001, 240(3): 147-186. [4] 冯国章, 宋松柏, 李佩成. 水文系统复杂性的统计测度 [J]. 水利学报, 1998, 29(11): 76-81.
[5] CHOU C M. Complexity analysis of rainfall and runoff time series based on sample entropy in different temporal scales [J]. Stochastic Environmental Research and Risk Assessment, 2014, 28(6): 1401-1408. [6] TANG L, LÜ H L, YANG F M, et al. Complexity testing techniques for time series data: A comprehensive literature review [J]. Chaos, Solitons & Fractals, 2015, 81: 117-135. [7] TONG C S, LIU H, HUANG Q, et al. The analyze of the rivers and runoff evolution feature on the basis of complexity theory [J]. Dynamics of Continuous Discrete and Impulsive Systems Series A—Mathematical Analysis, 2006, 13: 917-920. [8] 佟春生. 复杂性理论在河川径流时间序列分析中的应用研究 [D]. 西安: 西安理工大学, 2005.
[9] TANG L, YU L A, HE K J. A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting [J]. Applied Energy, 2014, 128: 1-14. [10] RIGGS H C. A method of forecasting low flow of streams [J]. Transactions of American Geophysical Union, 1953, 34: 427-434. [11] KROLL C, LU Z J, ALLEN B, et al. Developing a watershed characteristics database to improve low stream flow prediction [J]. Journal of Hydrologic Engineering, 2004, 9(2): 116-125. [12] SHAW S B, RIHA S J. Examining individual recession events instead of a data cloud: Using a modified interpretation of dQ/dt-Q stream flow recession in glaciated watersheds to better inform models of low flow [J]. Journal of hydrology, 2012, 434: 46-54. [13] CHANG M, BOYER D G. Estimates of low flows using watershed and climatic parameters [J]. Water Resources Research, 1977, 13(6): 997-1001. [14] 李秀云, 傅肃性, 宋现峰. 河川枯水径流与极值形成机理研究 [J]. 中国沙漠, 1999, 19(3): 228-233.
[15] LOGANATHAN G V, MATTEJAT P, KUO C Y, et al. Frequency analysis of low flows: Hypothetical distribution methods and a physically based approach [J]. Nordic Hydrology, 1986, 17(3): 129-150. [16] CHARRON C, OUARDA T B M J. Regional low-flow frequency analysis with a recession parameter from a non-linear reservoir model [J]. Journal of Hydrology, 2015, 524: 468-475. [17] 冯国章, 王双银. 河流枯水流量特征研究 [J]. 自然资源学报, 1995, 10(2): 127-135.
[18] 黄国如, 陈永勤, 解河海. 东江流域枯水径流的频率分析 [J]. 清华大学学报(自然科学版), 2005, 45(12): 1633-1635.
[19] 万东辉, 石贽赟, 何用, 等. 西江流域枯水径流频率分析 [J]. 水电能源科学, 2011, 29(4): 11-13.
[20] 张强, 孙鹏, 白云岗, 等. 塔河流域枯水流量概率特征及成因与影响研究 [J]. 地理科学, 2013, 33(4): 465-472.
[21] LI X G, WEI X, HUANG Q. Comprehensive entropy weight observability-controllability risk analysis and its application to water resource decision-making [J]. Water SA, 2012, 38(4): 573-579. [22] CHOU C M. Applying multiscale entropy to the complexity analysis of rainfall-runoff relationships [J]. Entropy, 2012, 14(5): 945-957. [23] 何文平, 何涛, 成海英, 等. 基于近似熵的突变检测新方法 [J]. 物理学报, 2011, 60(4): 45603-45616.
[24] LIN L, CHU F L. Approximate entropy as acoustic emission feature parametric data for crack detection, Nondestruct [J]. Nondestructive Testing and Evaluation, 2011, 26(2): 119-128. [25] HE Y Y, HUANG J, ZHANG B. Approximate entropy as a nonlinear feature parameter for fault diagnosis in rotating machinery [J]. Measurement Science and Technology, 2012, 23(4): 1-14. [26] SOUZA G M, RIBEIRO R V, SANTOS M G, et al. Approximate entropy as a measure of complexity in sap flow temporal dynamics of two tropical tree species under water deficit [J]. Anais da Academia Brasileira de Ciências, 2004, 76(3): 625-630. [27] KOLMOGOROV A N. Three approaches to the quantitative definition of information [J]. International Journal of Computer Mathematics, 1968, 2(1/4): 157-168. [28] PINCUS S. Approximate entropy (Apen) as a complexity measure [J]. Chaos, Solitons & Fractals, 1995, 5(1): 110-117. [29] PINCUS S. Approximate entropy as a measure of system-complexity [J]. Proceedings of the National Academy of Sciences of United States of America, 1991, 88(6): 2297-2301. [30] PINCUS S, HUANG W M. Approximate entropy-statistical properties and applications [J]. Communication in Statistics—Theory and Methods, 1992, 21(11): 3061-3077. [31] PEREZ-CANALES D, ALVAREZ-RAMIREZ J, JAUREGUI-CORREA J C, et al. Identification of dynamic instabilities in machining process using the approximate entropy method [J]. International Journal of Machine Tools and Manufacture, 2011, 51(6): 556-564. [32] 康艳, 蔡焕杰, 宋松柏. 水文系统复杂性模型研究及应用 [J]. 水力发电学报, 2013, 32(1): 5-10.
[33] 黄宁波, 王义民, 苏保林. 汉江上游洪水特性复杂度分析 [J]. 南水北调与水利科技, 2012, 10(1): 45-48.
[34] 孙东永, 黄强, 王义民. 滑动近似熵在径流序列突变性分析中的应用 [J]. 水力发电学报, 2014, 33(4): 1-6.
[35] 佟春生, 黄强, 刘涵, 等. 基于近似熵的径流序列复杂性研究 [J]. 西北农林科技大学学报(自然科学版), 2005, 33(6): 121-126.
[36] 李勋贵, 王晓磊, 魏霞. 泾河流域径流复杂性的多维特性 [J]. 兰州大学学报(自然科学版), 2015, 41(4): 447-453.
[37] LI Z, ZHANG Y K, LI Z, et al. Multi-scale entropy analysis of Mississippi River flow [J]. Stochastic Environmental Research and Risk Assessment, 2008, 22: 507-512. [38] 李勋贵, 王乃昂, 魏霞. 高含沙河流汛期弃水量确定的分级最大值法 [J]. 资源科学, 2010, 32(6): 1213-1219.
[39] LI X G, WEI X, WANG N A, et al. Maximum grade approach to surplus floodwater of hyperconcentration rivers in flood season and its application [J]. Water Resources Management, 2011, 25(10): 2575-2593. [40] LI X, WEI X. Analysis of the relationship between soil erosion risk and surplus floodwater during flood season [J]. Journal of Hydrologic Engineering, 2013, 19(7): 1294-1311. [41] RICHMAN J, MOORMAN R. Physiological time-series analysis using approximate entropy and sample entropy [J]. American Journal of Physiology—Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049. [42] 丁宏伟, 何江海. 疏勒河出山径流量变化特征及趋势分析 [J]. 干旱区研究, 2001, 18(3): 48-53.
[43] 蓝永超, 沈永平, 林纾, 等. 黄河上游径流丰枯变化特征及其环流背景 [J]. 冰川冻土, 2006, 28(6): 950-955.
[44] 王文圣, 向红莲, 李跃清, 等. 基于集对分析的年径流丰枯分类新方法 [J]. 四川大学学报(工程科学版), 2008, 40(5): 1-6.
[45] 丁志宏, 冯平, 毛慧慧. 考虑径流年内分布影响的丰枯划分方法及其应用 [J]. 吉林大学学报(地球科学版), 2009, 39(2): 276-280.
[46] 毕慈芬, 郭岗, 沈梅, 等. 1933~2007年黄河上中游连续枯水段的研究 [J]. 水文, 2009, 29(4): 59-63.
|