[1] 贺芳芳, 顾旭东, 徐家良. 20 世纪 90 年代以来上海地区光能资源变化研究 [J]. 自然资源学报, 2006, 21(4): 559-566.
[2] RAPPENGLÜCK B, MELAS D, FABIAN P. Evidence of the impact of urban plumes on remote sites in the Eastern Mediterranean [J]. Atmospheric Environment, 2003, 37(13): 1853-1864. [3] WEI J, WANG H. A possible role of solar radiation and ocean in the mid-Holocene East Asian monsoon climate [J]. Advances in Atmospheric Sciences, 2004, 21(1): 1-12. [4] 谢贤群, 王菱. 中国北方近 50 年潜在蒸发的变化 [J]. 自然资源学报, 2007, 22(5): 683-691.
[5] GAUTAM R, HSU N C, LAU K M, et al. Aerosol and rainfall variability over the Indian monsoon region: Distributions, trends and coupling [J]. Annales Geophysicae, 2009, 27(9): 3691-3703. [6] HUNT S. Effects of irradiance on photosynthetic CO 2 uptake and chlorophyll fluorescence [C]// Karcher S J. Tested Stu-dies for Laboratory Teaching, Volume 21. Proceedings of the 21st Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 2000: 225-247. [7] GIESEN R H, VAN DEN BROEKE M R, OERLEMANS J, et al. Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: Interannual variability and the effect of clouds [J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2008, 113: 6089-6098. doi:10.1029/2008JD010390. [8] IPCC. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC [M]. Cambridge University Press, 2007. [9] OHVRIL H, TERAL H, NEIMAN L, et al. Global dimming and brightening versus atmospheric column transparency, Europe, 1906-2007 [J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2009, 114: 1588-1593. doi:10.1029/2008JD010644. [10] NORRIS J R, WILD M. Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming,” and solar “brightening” [J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2007, 112(D8). doi:10.1029/2006JD007794. [11] 申彦波, 赵宗慈, 石广玉. 地面太阳辐射的变化, 影响因子及其可能的气候效应最新研究进展 [J]. 地球科学进展, 2008, 23(9): 915-924.
[12] HAIGH J D, WINNING A R, TOUMI R, et al. An influence of solar spectral variations on radiative forcing of climate [J]. Nature, 2010, 467(7316): 696-699. [13] MERKEL A W, HARDER J W, MARSH D R, et al. The impact of solar spectral irradiance variability on middle atmospheric ozone [J]. Geophysical Research Letters, 2011, 38(13), L13802, doi:10.1029/2011GL047561. [14] SHAPIRO A I, SCHMUTZ W, ROZANOV E, et al. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing [J]. Astronomy & Astrophysics, 2011, 529: A67. [15] SHAPIRO A V, ROZANOV E, EGOROVA T, et al. Sensitivity of the Earth’s middle atmosphere to short-term solar variability and its dependence on the choice of solar irradiance data set [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73(2): 348-355. [16] SHAPIRO A V, ROZANOV E V, SHAPIRO A I, et al. The role of the solar irradiance variability in the evolution of the middle atmosphere during 2004-2009 [J]. Journal of Geophysical Research: Atmospheres, 2013, 118(9): 3781-3793. [17] OBERLÄNDER S, LANGEMATZ U, MATTHES K, et al. The influence of spectral solar irradiance data on stratosphe-ric heating rates during the 11 year solar cycle [J]. Geophysical Research Letters, 2012, 39(1): 1801-1806. [18] ANGSTROM A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation [J]. Quarterly Journal of the Royal Meteorological Society, 1924, 50(210): 121-126. [19] MUBIRU J, BANDA E. Estimation of monthly average daily global solar irradiation using artificial neural networks [J]. Solar Energy, 2008, 82(2): 181-187. [20] TYMVIOS F S, JACOVIDES C P, MICHAELIDES S C, et al. Comparative study of Ångström’s and artificial neural networks’ methodologies in estimating global solar radiation [J]. Solar Energy, 2005, 78(6): 752-762. [21] REHMAN S, MOHANDES M. Artificial neural network estimation of global solar radiation using air temperature and relative humidity [J]. Energy Policy, 2008, 36(2): 571-576. [22] PIRI J, SHAMSHIRBAND S, PETKOVIĆ D, et al. Prediction of the solar radiation on the Earth using support vector regression technique [J]. Infrared Physics & Technology, 2015, 68: 179-185. [23] KADIRGAMA K, AMIRRUDDIN A K, BAKAR R A. Estimation of solar radiation by artificial networks: East Coast Malaysia [J]. Energy Procedia, 2014, 52: 383-388. [24] WAEWSAK J, CHANCHAM C, MANI M, et al. Estimation of monthly mean daily global solar radiation over Bangkok, Thailand using artificial neural networks [J]. Energy Procedia, 2014, 57: 1160-1168. [25] 王延慧, 史玉光, 何清, 等. 短波辐射研究概述 [J]. 沙漠与绿洲气象, 2013, 7(2): 68-73.
[26] RANGASAYI N, HALTHORE, STEPHEN E, et al. Comparison of model estimated and measured directnormal solar irradiance [J]. Journal of Geophysical Research, 1997, 102(D25): 29991-30002. [27] KATO S, ACKERMAN T P, DUTTON E G, et al. A comparison of modeled and measured surface shortwave irradiance for a molecular atmosphere [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 61(4): 493-502. [28] 傅炳珊, 陈渭民, 张凤英. 利用TOVS资料计算我国东南地区的太阳直接辐射和散射辐射 [J]. 南京气象学院学报, 2002, 25(6): 807-815.
[29] DE MIGUEL A, MATEOS D, BILBAO J, et al. Sensitivity analysis of ratio between ultraviolet and total shortwave solar radiation to cloudiness, ozone, aerosols and precipitable water [J]. Atmospheric Research, 2011, 102(1): 136-144. [30] ROMÁN R, BILBAO J, DE MIGUEL A. Uncertainty and variability in satellite-based water vapor column, aerosol optical depth and Angström exponent, and its effect on radiative transfer simulations in the Iberian Peninsula [J]. Atmospheric Environment, 2014a, 89: 556-569. [31] ROMÁN R, BILBAO J, DE MIGUEL A. Solar radiation simulations in the Iberian Peninsula: Accuracy and sensitivity to uncertainties in inputs of a radiative transfer model [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014b, 145: 95-109. [32] HOLBEN B N, ECK T F, SLUTSKER I, et al. AERONET—A federated instrument network and data archive for aerosol characterization [J]. Remote Sensing of Environment, 1998, 66(1): 1-16. [33] HOLBEN B N, TANRE D, SMIRNOV A, et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET [J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2001, 106(D11): 12067-12097. [34] SMIRNOV A, HOLBEN B N, ECK T F, et al. Cloud-screening and quality control algorithms for the AERONET database [J]. Remote Sensing of Environment, 2000, 73(3): 337-349. [35] KAUFMAN Y J, GAO B C. Remote sensing of water vapor in the near IR from EOS/MODIS [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 871-884. [36] GAO B C, GOETZ A F H. Column atmospheric water vapor and vegetation liquid water retrievals from airborne ima-ging spectrometer data [J]. Journal of Geophysical Research: Atmospheres (1984-2012), 1990, 95(D4): 3549-3564. [37] KING M D, KAUFMAN Y J, MENZEL W P, et al. Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS) [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1): 2-27. [38] KYLLING A, STAMNES K, TSAY S C. A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media [J]. Journal of Atmospheric Chemistry, 1995, 21(2): 115-150. [39] KURUCZ R L. Model atmospheres for population synthesis [M]// The Stellar Populations of Galaxies. Springer Netherlands, 1992: 225-232. [40] WANG K, ZHOU X, LIU J, et al. Estimating surface solar radiation over complex terrain using moderate-resolution satellite sensor data [J]. International Journal of Remote Sensing, 2005, 26(1): 47-58. |