[1] MONTEITH J L. Solar-radiation and productivity in tropical ecosystems [J]. Journal of Applied Ecology, 1972, 9(3): 747-766.
[2] MONTEITH J L. Climate and the efficiency of crop production in Britain [J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1977, 281(980): 277-294.
[3] CRAMER W, KICKLIGHTER D W, BONDEAU A. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results [J]. Global Change Biology, 1999, 5(S1): 1-15.
[4] RUIMY A, KERGOAT L, BONDEAU A. Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency [J]. Global Change Biology, 1999, 5(S1): 56-64.
[5] ADAMS J M, FAURE H, FAURE-DENARD L. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present [J]. Nature, 1990, 348: 711-714.
[6] GAMON J A, SERRANO L, SURFUS J S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels [J]. Oecologia, 1997, 112(4): 492-501.
[7] PENUELAS J, LLUSIA J, PINOL J. Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency assessment in mediterranean trees [J]. International Journal of Remote Sensing, 1997, 18(13): 2863-2868.
[8] PENUELAS J, INOUE Y. Reflectance assessment of canopy CO 2 uptake [J]. International Journal of Remote Sensing, 2000, 21(17): 3353-3356.
[9] GAMON J A, PENUELAS J, FIELD C B. A narrow-wave band spectral index that tracks diurnal changes in photosynthetic efficiency [J]. Remote Sensing of Environment, 1992, 41(4): 35-44.
[10] JUSTICE C O, VERMOTE E, TOWNSHEND J R G. The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1228-1249.
[11] GAMON J A, SURFUS J S. Assessing leaf pigment content and activity with a reflectometer [J]. New Phytologist, 1999, 143: 105-117.
[12] DEMMIG-ADAMS B. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin [J]. Biochimica et Biophysica Acta, 1990, 1020(1): 1-24.
[13] GILMORE A M. Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves [J]. Physiologia Plantarum, 1997, 99(1): 197-209.
[14] PENUELAS J, FILELLA I, GAMON J A, et al. Assessing photosynthetic radiation-use efficiency of emergent aquatic vegetation from spectral reflectance [J]. Aquatic Botany, 1997, 58(97): 307-315.
[15] 吴朝阳, 牛铮. 植物光化学植被指数对叶片生化组分参数的敏感性 [J]. 中国科学院研究生院学报, 2008, 25(3): 346-354. [WU C Y, NIU Z. Sensitivity study of photochemical reflectance index to leaf biochemical components. Journal of the Graduate School of the Chinese Academy of Sciences, 2008, 25(3): 346-354. ]
[16] 陈晋, 唐艳鸿, 陈学泓, 等. 利用光化学反射植被指数估算光能利用率研究的进展 [J]. 遥感学报, 2008, 12(2): 23-28. [CHEN J, TANG Y H, CHEN X H, et al. The review of estimating light use efficiency through photochemical reflectance index (PRI). Journal of Remote Sensing, 2008, 12(2): 23-28. ]
[17] 程占慧, 刘良云. 基于叶绿素荧光发射光谱的光能利用率探测 [J]. 农业工程学报, 2010, 26(S2): 74-80. [CHENG Z H, LIU L Y. Detection of vegetation light by using efficiency based on chlorophyll fluorescence spectrum. Transactions of the CSAE, 2010, 26(S2): 74-80. ]
[18] 王宪礼, 李秀珍. 湿地的国内外研究进展 [J]. 生态学杂志, 1997, 16(1): 58-62. [WANG X L, LI X Z. Advances in wetlands. Chinese Journal of Ecology, 1997, 16(1): 58-62. ]
[19] 孙睿, 朱启疆. 气候变化对中国陆地植被净第一性生产力影响的初步研究 [J]. 遥感学报, 2001, 5(1): 58-61. [SUN R, ZHU Q J. Effect of climate change of terrestrial net primary productivity in China. Journal of Remote Sensing, 2001, 5(1): 58-61. ]
[20] 吴统贵, 吴明, 萧江华. 杭州湾滩涂湿地植被群落演替与物种多样性动态 [J]. 生态学杂志, 2008, 27(8): 1284-1289. [WU T G, WU M, XIAO J H. Dynamic of community succession and spiecies diversity of vegetations in beach wetlands of Hangzhou Bay. Chinese Journal of Ecology, 2008, 27(8): 1284-1289. ]
[21] 吴朝阳, 牛铮, 汤泉. 叶片光化学植被指数(PRI)的修正及其敏感 [J]. 光谱学与光谱分析, 2008, 28(9): 2014-2018. [WU C Y, NIU Z, TANG Q. Sensitivity study of a revised leaf photochemical reflectance index (PRI). Spectroscopy and Spectral Analysis, 2008, 28(9): 2014-2018. ]
[22] 蔡博峰, 绍霞. 基于PROSPECT+SAIL模型的遥感叶面积指数反演 [J]. 国土资源遥感, 2007(2): 39-43. [CAI B F, SHAO X. Leaf area index petrieval based on remotely sensed data and PROSPECT+SAIL model. Remote Sensing for Land & Resources, 2007(2): 39-43. ]
[23] 叶子飘, 于强. 光合作用光响应模型的比较 [J]. 植物生态学报, 2008, 32(6): 1356-1361. [YE Z P, YU Q. Comparison of new and several classical models of photosynthesis in response to irradiance. Journal of Plant Ecology, 2008, 32(6): 1356-1361. ]
[24] SOUDANIA K, HMIMINAA G, DUFRÊNE E, et al. Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests [J]. Remote Sensing of Environment, 2014, 144(1): 73-84.
[25] BARTON C V M, NORTH P R J. Remote sensing of canopy light use efficiency using the photochemical reflectance index model and sensitivity analysis [J]. Remote Sensing of Environment, 2001, 78(3): 264-273.
[26] 吴朝阳, 牛铮. 光化学植被指数估算植物光能利用率的研究进展 [J]. 植物生态学报, 2008, 32(3): 734-740. [WU C Y, NIU Z. Review of retrieval light use efficiency using photochemical reflectance index (PRI). Journal of Plant Ecology, 2008, 32(3): 734-740. ]
[27] MAND P, HALLIKA L, PENUELAS J, et al. Responses of the reflectance indices PRI and NDVI to experimental warming and drought in European shrublands along a north-south climatic gradient [J]. Remote Sensing of Environment, 2010, 114(3): 626-636.
[28] 吴朝阳, 牛铮, 汤泉. 小麦生长过程中光能利用率和光化学反射指数的相关性研究 [J]. 光子学报, 2009, 38(1): 138-143. [WU C Y, NIU Z, TANG Q. Relationship between photochemical reflectance index and light use efficiency in growth duration of wheat. Acta Photonica Sinica, 2009, 38(1): 138-143. ]
[29] 吴朝阳, 牛铮, 汤泉. 不同氮,钾施肥处理对小麦光能利用率和光化学植被指数PRI指数的影响 [J]. 光谱学与光谱分析, 2009, 29(2): 455-458. [WU C Y, NIU Z, TANG Q. Effects of N, K fertilization on the relationship between photosynthetic light use efficiency and photochemical reflectance index (PRI). Spectroscopy and Spectral Analysis, 2009, 29(2): 455-458. ]
[30] 黄耀, 王彧, 张稳, 等. 中国农业植被净初级生产力模拟(I) 模型的建立与灵敏度分析 [J]. 自然资源学报, 2006, 21(5): 790-801. [HUANG Y, WANG Y, ZHANG W, et al. Simulation net primary production of agricultural vegetation in China (I): Model establishment and sensitivity analysis. Journal of Natural Resources, 2006, 21(5): 790-801. ]
[31] GARBULSKY M F, FILELLA I A, VERGER J, et al. Photosynthetic light use efficiency from satellite sensors: From global to Mediterranean vegetation [J]. Environmental and Experimental Botany, 2014, 103(3): 3-11.
[32] WU C Y, HUANG W J, YANG Q Y, et al. Improved estimation of light use efficiency by removal of canopy structural effect from the photochemical reflectance index (PRI) [J]. Agriculture, Ecosystems and Environment, 2015, 199: 333-338.
[33] GARBULSKY M F, PENUELAS J, GAMON J, et al. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis [J]. Remote Sensing of Environment, 2011, 115(2): 281-297.
[34] SHRESTHA S, BRUECK H, ASCH F. Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels [J]. Journal of Photochemistry and Photobiology B: Biology, 2012, 113(8): 7-13.
[35] PENUELAS J, FILELLA T, GAMON J A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance [J]. New Phytologist, 1995, 131(3): 291-296.
[36] SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages [J]. Remote Sensing of Environment, 2002, 81(2/3): 337-354.
[37] HILKER T, COOPS N C, HALL F G, et al. Separating physiologically and directionally induced changes in PRI using BRDF models [J]. Remote Sensing of Environment, 2008, 112(6): 2777-2788.
[38] DROLET G G, HUEMMRICH F G, HALL E M. A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest [J]. Remote Sensing of Environment, 2005, 98(2): 212-224.
[39] CHEN J M, LIU J, LEBLANC S G, et al. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption [J]. Remote Sensing of Environment, 2003, 84(4): 516-525.
[40] 王自奎, 吴普特, 赵西宁, 等. 作物间套作群体光能截获和利用机理研究进展 [J]. 自然资源学报, 2015, 30(6): 1057-1066. [WANG Z K, WU P T, ZHAO X N, et al. A review of light interception and utilization by intercropped canopies. Journal of Nature Resource, 2015, 30(6): 1057-1066. ]
[41] HALL F G, HILKER T, COOPS N C, et al. Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction [J]. Remote Sensing of Environment, 2008, 112(7): 3201-3211.
[42] 石浩, 王绍强, 黄昆, 等. PnET-CN模型对东亚森林生态系统碳通量模拟的适用性和不确定性分析 [J]. 自然资源学报, 2014, 29(9): 1453-1464. [SHI H, WANG S Q, HUANG K, et al. Application of the PnET-CN model to different forest ecosystems in East Asia. Journal of Natural Resources, 2014, 29(9): 1453-1464. ] |