自然资源学报 ›› 2015, Vol. 30 ›› Issue (12): 2131-2140.doi: 10.11849/zrzyxb.2015.12.014

• 资源研究方法 • 上一篇    下一篇

EnKF优化土壤湿度方程中参数的性能研究

李超a, 惠建忠a, 唐千红a, 杨霏云b   

  1. 中国气象局 a. 公共气象服务中心,b. 气象干部培训学院,北京 100081
  • 收稿日期:2015-01-08 修回日期:2015-05-18 出版日期:2015-12-15 发布日期:2015-12-15
  • 作者简介:李超(1981- ),女,河北邯郸人,工程师,博士,主要研究EnKF数据同化、气象数据挖掘。E-mail: lichao@cma.gov.cn
  • 基金资助:
    中国气象局公共气象服务中心业务服务专项基金(M2015021); 中国气象局公益性行业(气象)科研专项(GYHY201306052)

Calibration of Parameters in Soil Moisture Equation with EnKF

LI Chao, HUI Jian-Zhong, TANG Qian-hong, YANG Fei-Yun   

  1. a. Public Meteorological Service Center, b. Training Center, China Meteorological Administration, Beijing 100081, China
  • Received:2015-01-08 Revised:2015-05-18 Online:2015-12-15 Published:2015-12-15

摘要: 集合卡尔曼滤波(EnKF)是一种灵活有效的序贯数据同化方法,解决参数优化问题具有优势:一是可以显式地考虑多源不确定性,从而避免对参数的过度调整来弥补其他来源的误差而产生次优参数;二是实时处理最新更新的观测数据,从而不需要存储和同时处理所有历史数据;三是使用集合和蒙特卡罗方法来表征和预报相关误差统计量,不需要封闭解逼近,易于实施。论文借助一维土壤湿度模型,通过观测系统模拟试验的方式,评估EnKF对水力学函数参数的优化效果。结果表明,敏感参数更易得到最优估值,优化效果不受初始猜测及观测误差设置等的影响。和直观想法相反,增加同化频率可能会使估值结果不稳定。

Abstract: Ensemble Kalman Filer (EnKF) is a flexible and effective sequential data assimilation method. Appling EnKF to solve the parameter optimization problem has several advantages. Firstly, it explicitly considers multiple sources of uncertainty, thus avoids the excessive adjustment of parameters due to the compensation for errors arising from other sources, which will generate sub-optimal parameters. Secondly, it processes the latest updated observations, eliminating the storage and processing all the historical data simultaneously. Thirdly, it characterizes and predicts related error statistics by Monte Carlo method, thus no closed solution approach is needed, making it easy to build with existing numerical models. In this study, by simulation of observed data, EnKF is evaluated in terms of the effectiveness and efficiency of calibrating soil hydraulic function parameters in one-dimensional Richards equa-tion. The results show that, optimal parameter estimates can be easier obtained for more sensitive parameters. The performance is influenced by neither the initial surmises nor the observation error settings. Contrary to intuition, the increase of assimilation frequency may cause instable estimation results.

中图分类号: 

  • S152.7