自然资源学报 ›› 2015, Vol. 30 ›› Issue (9): 1511-1522.doi: 10.11849/zrzyxb.2015.09.008

• 资源评价 • 上一篇    下一篇

黄土丘陵沟壑区大空间尺度林草植被减沙方程的尺度适应性

罗娅1, 2, 杨胜天1, *, 周秋文1, 2, 陈珂1, 王志伟1   

  1. 1. 遥感科学国家重点实验室,北京师范大学 地理学与遥感科学学院,环境遥感与数字城市北京市重点实验室,北京 100875;
    2. 贵州师范大学 地理与环境科学学院,贵阳 550001
  • 收稿日期:2015-01-27 修回日期:2015-07-28 出版日期:2015-09-15 发布日期:2015-09-15
  • 通讯作者: 杨胜天(1965- ),男,教授,主要研究方向为水资源与水环境遥感。E-mail: yangshengtian@bnu.edu.cn
  • 作者简介:罗娅(1979- ),女,副教授,主要从事土地利用与水土流失治理研究。E-mail: luoya2002@163.com
  • 基金资助:

    国家“十二五”科技支撑计划课题(2012BAB02B00); 水利部公益项目(201101037); 中央高校基本科研业务费专项

Scale Adaptability of the Large-Scale Vegetation Reducing Sediment Equation in the Loess Hilly Region

LUO Ya1, 2, YANG Sheng-tian1, ZHOU Qiu-wen1, 2, CHEN Ke1, WANG Zhi-wei1   

  1. 1.State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing 100875, China;
    2.School of Geographic and Environmental Sciences, Guizhou Normal University, Guiyang 550001, China
  • Received:2015-01-27 Revised:2015-07-28 Online:2015-09-15 Published:2015-09-15

摘要:

黄土丘陵沟壑区大空间尺度植被减沙方程是分析黄土高原植被变化产沙效应的有效工具,其在不同空间尺度的适应性对于黄河水沙情势变化研究十分重要。运用数值试验方法,研究黄土丘陵沟壑区大空间尺度林草植被减沙方程在小流域、子流域和栅格等3种空间尺度的适应性。结果显示,黄土丘陵沟壑区大空间尺度林草植被减沙方程在各空间尺度的总体估算偏差(D)由小到大排序为小流域(D=52.26%)<子流域(D=60.07%)<栅格(D=92.17%),纳什效率系数(NSE)由大到小排序为小流域(0.21)>子流域(-0.31)>栅格(-0.80)。可见,黄土丘陵沟壑区大空间尺度植被减沙方程在约500 km2以上的流域单元较为适用,在500 km2以下的子流域和栅格单元不适用。该研究成果可为黄土丘陵沟壑区大空间尺度林草植被减沙方程的推广应用提供参考。

Abstract:

The large- scale vegetation reducing sediment equation in the loess hilly region (LVRSE) is one of the efficient tools for analyzing the effect of vegetation change on sediment yield in the Loess Plateau, and its adaptability at different spatial scales is very important to study the water and sediment changes of Yellow River. This research uses a numericalexperimental method to study the adaptability of LVRSE at small basin, sub- basin and grid scales. The result shows that the overall estimation bias (D) of LVRSE at different spatial scales ranks in the following order: small basin (D=52.26%), sub-basin (D=60.07%), grid (D= 92.17%); the Nash- Sutcliffe model efficiency coefficient (NSE) of the LVRSE at different spatial scales ranks in the following order: small basin (NSE =0.21), sub-basin (NSE=-0.31), grid (NSE=-0.80). This result indicates that the LVRSE is more applicable to small basins of more than about 500 km2, and not applicable to the sub-basins and grids of less than 500 km2. These findings can provide reference for the popularization and application of the LVRSE.

中图分类号: 

  • S157