自然资源学报 ›› 2015, Vol. 30 ›› Issue (4): 684-695.doi: 10.11849/zrzyxb.2015.04.014

• 资源评价 • 上一篇    下一篇

东江流域水利工程对流域地表水文过程影响模拟研究

张正浩, 张强, 邓晓宇, 刘剑宇, 孙鹏   

  1. 1. 中山大学 水资源与环境系, 广州510275;
    2. 中山大学 华南地区水循环与水安全广东省普通高校重点实验室, 广州510275;
    3. 中山大学 广东省城市化与地理环境空间模拟重点实验室, 广州510275
  • 收稿日期:2013-11-22 修回日期:2014-02-10 出版日期:2015-04-20 发布日期:2015-04-16
  • 通讯作者: 张强(1974- ),男,山东沂水人,博士,教授,博士生导师,主要从事流域气象水文学研究、旱涝灾害机理、流域地表水文过程及其对气候变化的响应机制与机理以及流域生态需水等领域的研究工作.Email:zhangq68@mail.sysu.edu.cn E-mail:zhangq68@mail.sysu.edu.cn
  • 作者简介:张正浩(1990- ),男,广东广州人,硕士研究生,主要从事径流模拟与模型模拟分析.Email:zhenghaozhangSYSU@hotmail.com
  • 基金资助:

    国家杰出青年科学基金项目(51425903);中央高校基本科研业务费专项资金.

Hydrological Effects ofWater Reservoirs on Fluvial Hydrological Processes for the East River Basin Using Statistical Modeling Technique

ZHANG Zheng-hao, ZHANG Qiang, DENG Xiao-yu, LIU Jian-yu, SUN Peng   

  1. 1. Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou 510275, China;
    2. Key Laboratory ofWater Cycle and Water Security in Southern China of Guangdong High Education Institute, Sun Yat-sen University, Guangzhou 510275, China;
    3. School of Geography and Planning, Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2013-11-22 Revised:2014-02-10 Online:2015-04-20 Published:2015-04-16

摘要:

东江流域为香港及广州等特大城市的重要水源地,新丰江、枫树坝与白盆珠三大水库对东江全流域水资源有控制性调蓄作用,加上人类活动影响,导致东江流域地表径流发生显著变异.研究分析东江流域上中下游水利工程建成前、后径流在时间与空间的变异特征,对水利工程与人类活动影响的东江流域水资源管理提供重要依据.基于此,选取多元线性回归、神经网络与支持向量机等模型模拟水利工程建成前的径流变化,研究认为:①神经网络为水利工程建成后径流变化模拟的最优模型;②水利工程建成后,流域径流变异特征分两阶段:1974—1982年流域水文变异不显著,水利工程影响不大;1983—2000 年径流变异显著,水利工程削峰填谷作用明显;③东江流域龙川、岭下、博罗站水文变化均受水利工程调蓄影响,但影响程度各异:博罗站水文变化受水利工程影响最大,岭下站次之,龙川站受影响最小.另外,在水利工程调蓄作用影响下,东江流域月径流变化幅度趋于平坦,在一定程度上降低了洪水风险及减少了极端气候条件对东江流域水资源供给造成的负面影响.

关键词: 水利工程, 神经网络, 相关系数, 变异系数

Abstract:

This study aims to analyze hydrological effects of water reservoirs on hydrological processes using SVM, MRL and ANN techniques. The results indicate that: 1) ANN model performs well in handling hydrological processes under the influences of human activities, the construction of water reservoirs in this study, and climate changes. The ANN model is accepted as the right model for the hydrological simulations. 2) Generally, two time periods can be identified with different influences of water reservoirs within the East River Basin: 1974- 1982 is characterized by insignificant hydrological alteration and influences of hydraulic facilities are minor; the period of 1983-2000 is dominated by significant alterations of hydrological processes with influences of water reservoirs on hydrological processes, and the result is to flatten the fluctuation of hydrological processes. 3) The hydrological processes of the Longchuan, Lingxia and Boluo stations are heavily influenced by hydrological regulations of water reservoirs with different influences: Boluo station is heavily influenced by hydrological regulations of water reservoirs and is followed by Lingxia and Longchuan stations. Besides, the monthly streamflow changes are subject to flattening processes under the influences of water reservoirs.

Key words: correlation coefficient, water reservoirs, artificial neural network, coefficient of variation

中图分类号: 

  • P333.5