自然资源学报 ›› 2015, Vol. 30 ›› Issue (1): 133-140.doi: 10.11849/zrzyxb.2015.01.012

• 资源评价 • 上一篇    下一篇

中国亚热带重要树种植硅体碳封存潜力估测

应雨骐1, 项婷婷1, 李永夫1,2, 吴家森1,2, 姜培坤1,2   

  1. 1. 浙江农林大学 环境与资源学院, 浙江临安311300;
    2. 浙江农林大学 浙江省森林生态系统碳循环与固碳减排重点实验室, 浙江临安311300
  • 收稿日期:2013-12-09 修回日期:2014-04-23 出版日期:2015-01-20 发布日期:2015-01-20
  • 作者简介:应雨骐(1990-),女,浙江衢州人,硕士研究生,主要研究森林土壤质量与环境学.E-mail:yingyuqi0614@163.com
  • 基金资助:
    :国家自然科学基金(31270667);浙江省重点科技创新团队(2010R50030).

Estimation of Sequestration Potential via Phytolith Carbon by Important Forest Species in Subtropical China

YING Yu-qi1, XIANG Ting-ting1, LI Yong-fu1,2, WU Jia-sen1,2, JIANG Pei-kun1,2   

  1. 1. School of Environmental and Resource Sciences, Lin'an 311300, China;
    2. Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A & F University, Lin'an 311300, China
  • Received:2013-12-09 Revised:2014-04-23 Online:2015-01-20 Published:2015-01-20
  • Contact: 姜培坤(1963-),男,浙江桐乡人,教授,主要研究土壤质量与环境学.E-mail:jiangpeikun@zafu.edu.cn E-mail:jiangpeikun@zafu.edu.cn

摘要: 研究选取中国亚热带阔叶林、针叶林、竹林等3 种森林类型中常见的7 个树种,通过微波消解法提取其植硅体,并对其植硅体中碳含量进行测定,计算植硅体产量并估测碳封存量,结果表明:① 7个树种叶子植硅体碳占干物质含量分别为毛竹3.31±0.53 g·kg-1、杉木0.30±0.06 g·kg-1、马尾松0.40±0.11 g·kg-1、苦槠0.19±0.04 g·kg-1、青冈0.88±0.09 g·kg-1、木荷0.49±0.18 g·kg-1、枫香1.12±0.33 g·kg-1;② 相关分析表明,硅与植硅体含量(P<0.05,R2=0.989 7)、植硅体与植硅体碳占物质含量(P<0.05,R2=0.881 6)、植硅体碳与植硅体碳占干物质含量(P<0.05,R2=0.354 4)之间的相关性达显著水平.③ 毛竹的植硅体碳封存速率最高,若以最高植硅体碳封存速率0.050 6t- e-CO2·hm-2·a-1计算,面积为3.87×106 hm2的毛竹林每年可封存约1.96×105 t CO2;④ 杉木、马尾松的植硅体碳封存速率分别为0.005 6 和0.010 8 t-e-CO2 ·hm-2 ·a-1,面积分别为1.13×107、1.20×107 hm2的杉木林、马尾松林每年可封存约6.33×104、1.30×105 t CO2;⑤ 阔叶林植硅体碳封存速率介于0.000 5~0.019 3 t-e-CO2·hm-2·a-1之间,面积为2.49×107 hm2的阔叶林每年可封存1.25×104~48.15×104 t CO2.

Abstract: In this study, seven tree species including broad-leaved forest, coniferous forest, and bamboo forest in subtropical China were selected as experimental materials. The phytolith in the plants was extracted through a microwave digestion method and the phytolith occluded carbon (PhytOC) concentrations in the leaves were determined. The results showed that: 1) all the seven tree species had the potential of carbon bio-sequestration within phytoliths. The PhytOC concentrations in dry leaf biomass of different tree species were in the following order: Phyllostachys pubescens (3.31 ± 0.53 g·kg-1) > Liquidambar formosana (1.12 ± 0.33 g·kg-1) > Cyclobalanopsis glaua (0.88 ± 0.09 g·kg-1) > Schima superba (0.49 ± 0.18 g·kg-1) > Pinus massoniana (0.40 ± 0.11 g·kg-1) > Cunninghamia lanceolata (0.30 ± 0.06 g·kg-1) > Castanopsis sclerophylla (0.19 ± 0.04 g·kg-1). 2) There were strong linear relationships between Si concentrations and phytolith concentrations (P<0.05, R2=0.9897), phytolith concentrations and PhytOC concentrations in the leaf dry weight (P<0.05, R2=0.8816), PhytOC concentrations in phytoliths and PhytOC in the leaf dry weight (P<0.05, R2=0.3544). 3) Phyllostachys pubescens had the highest PhytOC fluxes (0.0506 t-e-CO2·hm-2·a-1), bio-sequestration via phytolith carbon from leaf-litter under 3.87×106 hm2 of Phyllostachys pubescens stands in subtropical China is estimated to be about 1.96×105 t CO2. 4) The phytoliths carbon bio- sequestration flux of Cunninghamia lanceolata and Pinus massoniana were 0.0056 and 0.0108 t-e-CO2·hm-2·a-1, respectively, bio-sequestration via phytolith carbon from leaf-litter under 1.13×107 and 1.20×107 hm2 of Cunninghamia lanceolata and Pinus massoniana stands is estimated to be about about 6.33×104 and 1.30 × 105t CO2, respectively. 5) The phytoliths carbon bio- sequestration flux of broadleaved forests ranged from 0.0005 to 0.0193 t-e-CO2·hm-2, bio-sequestration via phytolith carbon from leaf-litter under 2.49×107 hm2 of broad-leaved forests in subtropical China is estimated to be about 1.25×104-48.15×104 t CO2.

中图分类号: 

  • Q945.1