[1] Arnold J G, Allen P M, Bernhardt G. A comprehensive surface-groundwater flow model[J]. Journal of Hydrology, 1993, 142(1/4): 47-69.
[2] Bingner R L. Runoff simulated from Goodwin Creek watershed using SWAT[J]. Transactions of the ASAE, 1996, 39 (1): 85-90.
[3] Chow V T, Maidment D R, Mays L W. Applied Hydrology[M]. New York: McGraw-Hill Book Co., Inc., 1998.
[4] Chu T W, Shirmohammadi A. Evaluation of SWAT model's hydrology component in the piedmont physiographic region of Maryland[J]. Transactions of the ASAE, 2004, 47(4): 1057-1073.
[5] Gitau M W, Gburek W J, Jarrett A R. Estimating best management practice effects on water quality in the Town Brook watershed, New York[C]//Proc. Interagency Federal Modeling Meeting Las Vegas, 2002, 2: 1-12.
[6] Rosenthal W D, Srinivasan R, Arnold J G. Alternative river management using a linked gis-hydrology model[J]. Transactions of the ASAE, 1995, 38(3): 783-790.
[7] Sophocleous M A, Koelliker J K, Govindaraju R S, et al. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas[J]. Journal of Hydrology, 1999, 214 (1/4):179-196.
[8] Spruill C A, Workman S R, Taraba J L. Simulation of daily and monthly stream discharge from small watersheds using the SWAT model[M]. Transactions of the ASAE, 2000, 43(6): 1431-1439.
[9] van Liew M W, Garbrecht J. Hydrologic simulation of the little Washita River Experimental Watershed using SWAT[J]. Journal of the American Water Resources Association, 2003, 39(2): 413-426.
[10] Weber A, Fohrer N, Moller D. Long-term land use changes in a mesoscale watershed due to socio-economic factors—Effects on landscape structures and functions[J]. Ecological Modelling, 2001, 140(1/2): 125-140.
[11] Cazorzi F, Fontana G D. Snowmelt modelling by combining air temperature and a distributed radiation index[J]. Journal of Hydrology, 1996, 181(1/4): 169-187.
[12] Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool (SWAT) theoretical documentation[R]. Temple, TX, 2001: 781.
[13] Martinec J, Rango A, Roberts R T. Snowmelt Runoff Model (SRM) User's Manual[M]. Las Cruces, New Mexico: New Mexico State University, 2008: 175.
[14] Rango A, Martinec J. Predictions for snow cover, glaciers and runoff in a changing climate[R]. International Interdisciplinary Conference on Predictions for Hydrology, Ecology, and Water Resource Mangement. 2008: 277-280.
[15] Dewalle D R, Rango A. Snowmelt-Runoff Model (SRM) Principles of Snow Hydrology[M]. Cambridge: Cambridge University Press, 2008: 306-364.
[16] Fuka D R, Easton Z M, Brooks E S. A simple process-based snowmelt routine to model spatially distributed snow depth and snowmelt in the SWAT Model[J]. Journal of the American Water Resources Association, 2012, 48(6): 1151-1161.
[17] Albert M, Krajeski G. A fast physically based point snowmelt model for use in distributed applications[J]. Hydrological Processes, 1998, 12: 1809-1824.
[18] Pradhanang S M, Anandhi A, Mukundan R. Application of SWAT model to assess snowpack development and streamflow in the Cannonsville watershed[J]. Hydrological Processes, 2011, 25(21): 3268-3277.
[19] Flynn K F, van Liew M W. Evaluation of Swat for sediment prediction in a mountainous snowmelt-dominated catchment[J]. Transactions of the ASABE, 2011, 54(1): 113-122.
[20] Bathurst J C, Cooley K R. Use of the SHE hydrological modelling system to investigate basin response to snowmelt at Reynolds Creek, Idaho[J]. Journal of Hydrology, 1996, 175(1/4): 181-211.
[21] Todini E. The ARNO rainfall-runoff model[J]. Journal of Hydrology, 1996, 175(1/4): 339-382.
[22] Debele B, Srinivasan R, Gosain A K. Comparison of process-based and temperature-index snowmelt modeling in SWAT[J]. Water Resources Management, 2010, 24(6): 1065-1088.
[23] Koivusalo H, Kokkonen T. Snow processes in a forest clearing and in a coniferous forest[J]. Journal of Hydrology, 2002, 262(1): 145-164.
[24] Marks D, Kimball J, Tingey D, et al. The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: A case study of the 1996 Pacific Northwest flood[J]. Hydrological Processes, 1998, 12(10/11): 1569-1587.
[25] Marks D, Domingo J, Susong D, et al. A spatially distributed energy balance snowmelt model for application in mountain basins[J]. Hydrological Processes, 1999, 13(12/13): 1935-1959.
[26] Zhang Yichi, Li Baolin, Bao Anming, et al. Study on snowmelt runoff simulation in the Kaidu River basin[J]. Science in China Series D: Earth Sciences, 2007, 50(1): 26-35.
[27] Morid S, Gosain A K, Keshari A K. Challenges in snowmelt-runoff simulation[J]. Journal of the Earth and Space Physics, 2001, 27(2): 11-20.
[28] Morid S, Gosain A K, Keshari A K. Solar radiation estimation using temperature-based stochastic and arti ficial neural networks approaches[J]. Nordic Hydrology, 2002, 33(4): 291-304.
[29] LaMalfa E M, Ryel R J. Differential snowpack accumulation and water dynamics in aspen and conifer communities: Implications for water yield and ecosystem function[J]. Ecosystems, 2008, 11(4): 569-581.
[30] Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool theoretical documentation version 2009[R]. Texas Water Resources Institute Technical Report No. 406. http://swatmodel.tamu.edu/documentation/.[2012-02-08], 2011.
[31] Marshall S, Oglesby R J, Maasch K A, et al. Improving climate model representations of snow hydrology[J]. Environmental Modelling & Software, 1999, 14(4): 327-334.
[32] Zhao Q, Liu Z, Ye B, et al. A snowmelt runoff forecasting model coupling WRF and DHSVM[J]. Hydrology and Earth System Sciences, 2009, 13(10): 1897-1906.
[33] Dickinson R E, Henderson-Sellers A, Kennedy P J. TN-387+STR-Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model[R]. CGD, 1993: 80.
[34] Bristow K L, Campbell G S, Saxton K E. An equation for separating daily solar irradiation into direct and diffuse components[J]. Agricultural and Forest Meteorology, 1985, 35(1): 123-131.
[35] Tarboton D G. Measurements and modeling of snow energy balance and sublimation from snow[R]. International Snow Science Workshop, 1994: 260-279.
[36] 赵求东, 刘志辉, 房世峰, 等. 基于EOS/MODIS遥感数据改进式融雪模型[J]. 干旱区地理, 2007, 30(6): 915-920.
[37] Cline D W. Snow surface energy exchanges and snowmelt at a continental, midlatitude alpine site[J]. Water Resources Research, 1997, 33(4): 689-701.
[38] Abbott M B, Bathurst J C, Cunge J A, et al. An introduction to the European Hydrological System — Systeme Hydrologique Europeen, "SHE", 2: Structure of a physically-based, distributed modelling system[J]. Journal of Hydrology, 1986, 87(1/2): 61-77.
[39] 张超, 郑钧, 张尚弘, 等. ArcGIS 9.0 中基于DEM的水文信息提取方法[J]. 水利水电技术, 2005, 36(11): 1-4.
[40] Chow V T. Open Channel Hydraulics[M]. McGraw-Hill, New York, 1959.
[41] Lane L J. Chapter 19: Transmission Losses[M]//Soil Conservation Service. National Engineering Handbook. 1983: 19-11-19-21. |