自然资源学报 ›› 2013, Vol. 28 ›› Issue (6): 981-993.doi: 10.11849/zrzyxb.2013.06.009
林飞燕1,2, 吴宜进1, 王绍强2, 周蕾2, 杨风亭2, 石浩2, 蔡锦涛1,2
收稿日期:
2012-06-20
修回日期:
2012-10-31
出版日期:
2013-06-20
发布日期:
2013-06-20
通讯作者:
王绍强(1972- ),湖北襄樊人,研究员,主要从事生态系统碳循环研究。 E-mail:sqwang@igsnrr.ac.cn
E-mail:sqwang@igsnrr.ac.cn
作者简介:
林飞燕(1988- ),男,江西兴国人,硕士,主要从事农田土壤碳模型研究。E-mail:feiyan168@163.com
基金资助:
科技部国际合作项目(2010DFA22480);中国科学院青年人才项目(KZCX2-YW-QN301); 国家自然科学基金(31070438)。
LIN Fei-yan1,2, WU Yi-jin1, WANG Shao-qiang2, ZHOU Lei2, YANG Feng-ting2, SHI Hao2, CAI Jin-tao1,2
Received:
2012-06-20
Revised:
2012-10-31
Online:
2013-06-20
Published:
2013-06-20
摘要:
秸秆还田等农田管理措施能有效地增加土壤碳储量,从而有利于减缓大气CO2浓度的上升趋势。论文基于环境政策综合气候模型(EPIC),采用千烟洲生态试验站和鹰潭生态试验站农田监测场长期观测数据,验证和优化了EPIC模型参数,同时利用1990—2010年江西省气象资料以及土壤清查资料,模拟分析了4种秸秆还田(CR)比例情景下2010—2030年江西省水稻田土壤的固碳潜力。研究结果表明,无秸秆还田 (CR0%)和秸秆还田25%(CR25%)两种处理下耕作层土壤有机碳储量分别下降21.3%和6.5%,秸秆还田50%(CR50%)和100%(CR100%)处理下土壤有机碳储量分别增加5.4%和11.9%;相对CR0%情景而言,CR25%、CR50%、CR100% 情景下江西省水稻田土壤总固碳潜力分别为6.43、14.92和25.26 TgC(1 Tg = 106 t)。研究结果表明,通过合理的调控措施,采用保护性耕作(秸秆还田)是提高水稻田土壤固碳能力的一种有效途径。
中图分类号:
林飞燕, 吴宜进, 王绍强, 周蕾, 杨风亭, 石浩, 蔡锦涛. 秸秆还田对江西农田土壤固碳影响的模拟分析[J]. 自然资源学报, 2013, 28(6): 981-993.
LIN Fei-yan, WU Yi-jin, WANG Shao-qiang, ZHOU Lei, YANG Feng-ting, SHI Hao, CAI Jin-tao. Simulation and Prediction of Straw Return on Soil Carbon Sequestration Potential of Cropland in Jiangxi Province[J]. JOURNAL OF NATURAL RESOURCES, 2013, 28(6): 981-993.
[1] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47: 151-163.[2] Lal R, Bruce J P. The potential of world crop land soils to sequester C and mitigate the greenhouse effect[J]. Environmental Science and Policy, 1999, 2: 177-185.[3] Smith P, Smith J U, Powlson D S, et al. A comparison of the performance of nine soil organic matter models using seven long-term experimental datasets[J]. Geoderma, 1997, 81: 153-225.[4] Holford I C R, Crocker G J. A comparison of chickpeas and pasture legumes for sustaining yields and nitrogen status of subsequent wheat[J]. Australian Journal of Agricultural Research, 1997, 48: 305-315.[5] Lu F, Wang X K, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland[J]. Global Change Biology, 2009, 15(2): 281-305.[6] Lal R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO-enrichment[J]. Soil and Tillage Research, 1997, 43: 81-107.[7] Freibauer A, Rounsevell M D, Smith P, et al. Carbon sequestration in the agricultural soils of Europe[J]. Geoderma, 2004, 122:1-23.[8] Follett R F. Soil management concepts and carbon sequestration in cropland soils[J]. Soil and Tillage Research, 2001, 61: 77-92.[9] 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998.[Chinese National Soil Survey Office. China Soil Data from Census. Beijing: China Agricultural Press, 1998.][10] Pan G X, Li L Q, Wu L S, et al. Storage and sequestration potential of organic carbon in China's paddy soils[J]. Global Change Biology, 2004, 10(1): 79-92.[11] Xu S X, Shi X Z, Zhao Y C, et al. Carbon sequestration potential of recommended management practices for paddy soils of China, 1980-2050[J]. Geoderma, 2011, 166: 206-213.[12] Tang H J, Qiu J J, Ranst V E, et al. Estimations of soil organic carbon storage in cropland of China based on DNDC model[J]. Geoderma, 2006, 134: 200-206.[13] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51: 1173-1179.[14] Huang Y, Yu Y Q, Zhang W, et al. Agro-C:A biogeophysical model for simulating the carbon budget of agroecosystems[J]. Agricultural and Forest Meteorology, 2009, 149: 106-129.[15] Li C, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events:Model structure and sensitivity[J]. Journal of Geophysical Research—Atmosphere, 1992, 97: 9759-9776.[16] Farina R, Seddaiu G, Orsini R, et al. Soil carbon dynamics and crop productivity as influenced by climate change in a rainfed cereal system under contrasting tillage using EPIC[J]. Soil and Tillage Research, 2011, 112: 36-46.[17] Thomson A M, Izaurralde R C, Rosenberg N J, et al. Climate change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China[J]. Agriculture, Ecosystems and Environment, 2006, 114: 195-209.[18] Wang X C, Li J, Tahir M N, et al. Validation of the EPIC model using a long-term experimental data on the semi-arid Loess Plateau of China[J]. Mathematical and Computer Modelling, 2011, 54: 976-986.[19] Liu J G, David Wiberg, Alexander J B, et al. Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China[J]. Irrigation Science, 2007, 26: 21-33.[20] 江西省统计局. 江西省统计年鉴鉴[M]. 北京: 中国统计出版社, 2011: 12-14.[Jiangxi Statistical Bureau. Jiangxi Statistical Yearbook. Beijing: China Statistical Press, 2011: 12-14.][21] 中国农业年鉴编辑委员会. 中国农业年鉴[M]. 北京: 农业出版社, 2011: 255.[Editorial Committee of China Agriculture Yearbook. China Agriculture Yearbook. Beijing: Agriculture Press, 2011: 255.][22] 王晓鸿, 鄢帮有, 吴国琛. 山江湖工程[M]. 北京: 科学出版社, 2006: 39-37.[WANG Xiao-hong, YAN Bang-you, WU Guo-chen. The Program of Mountain-River-Lake. Beijing: Science Press, 2006: 39-37.][23] Williams J R. The EPIC model[M]//Singh V P. Computer Models in Watershed Hydrology. Water Resources Publication, Highlands Ranch, 1995: 909-1000.[24] Izaurralde R C, Williams J R, McGill W B, et al. Simulating soil C dynamics with EPIC: Model description and testing against long-term data[J]. Ecological Modelling, 2006, 192: 362-384.[25] Balkovi? J, Schmid E, Skalský R, et al. Modelling soil organic carbon changes on arable land under climate change—A case study analysis of the Koín Farm in Slovakia[J]. Soil & Water resources, 2011, 6(1): 30-42.[26] 冀建华, 刘秀梅, 侯红乾, 等. 鄱阳湖生态区长期施肥对稻田土壤碳汇效应与固碳潜力的影响[J]. 长江流域资源与环境, 2012, 21(2): 188-194.[JI Jian-hua, LIU Xiu-mei, HOU Hong-qian, et al. Effects of long-term fertilization on storages and capacities of SOC in the paddy topsoil in Poyang Lake ecological area. Resources and Environment in the Yangtze Basin, 2012, 21(2): 188-194.][27] Williams T W R, Griffiths J F. An assessment of the weather generator (WXGEN) used in the erosion/productivity impact calculator (EPIC)[J]. Agricultural and Forest Meteorology, 1995, 73: 115-133.[28] 全国土壤普查办公室. 中国土种志第一卷[M]. 北京: 农业出版社, 1993.[Chinese National Soil Survey Office. China Soil Data from Census. Beijing: Agricultural Press, 1993.][29] 黄国勤, 张桃林, 赵其国. 中国南方耕作制度[M]. 北京: 中国农业出版社, 1997.[HUANG Guo-qin, ZHANG Tao-lin, ZHAO Qi-guo. Farming System in Southern China. Beijing: Agricultural Press, 1997.][30] 韩冰, 王效科, 逯非, 等. 中国农田土壤生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2): 613-616.[HAN Bing, WANG Xiao-ke, LU Fei, et al. Soil carbon sequestration and its potential by cropland ecosystem's in China. Acta Ecologica Sinica, 2008, 28(2): 613-616.][31] 王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析[J]. 地理学报, 2000, 55(5): 534-535.[WANG Shao-qiang, ZHOU Cheng-hu, LI Ke-rang, et al. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geographica Sinica, 2000, 55(5): 534-535.][32] 刘守龙, 童成立, 张文菊, 等. 湖南省稻田表层土壤固碳潜力模拟研究[J]. 自然资源学报, 2006, 21(1): 119-125.[LIU Shou-long, TONG Cheng-li, ZHANG Wen-ju, et al. Simulation of carbon sequestration potential of paddy soils in Hunan Province. Journal of Natural Resources, 2006, 21(1): 119-125.][33] 吴家梅, 纪雄辉, 彭华, 等. 南方双季稻田稻草还田的碳汇效应[J]. 应用生态学报, 2011, 22(12): 3196-3202.[WU Jia-mei, JI Xiong-hui, PENG Hua, et al. Carbon sequestration effects of rice straw return in double season paddy field in Southern China. Chinese Journal of Applied Ecology, 2011, 22(12): 3196-3202.][34] Bierke A, Kaiser K, Guggenbergerg crop residue management effects on organic matter in paddy soils—The lignin component[J]. Geoderma, 2008, 46: 48-57.[35] Wang L G, Qiu J J, Tang H J, et al. Modelling soil organic carbon dynamics in the major agricultural regions of China[J]. Geoderma, 2008, 147: 47-55.[36] 鲁艳红, 杨曾平, 郑圣先, 等. 长期施用化肥、猪粪和稻草对红壤水稻土化学和生物化学性质的影响[J]. 应用生态学报, 2010, 21(4): 921-929.[LU Yan-hong, YANG Zeng-ping, ZHEN Sheng-xian, et al. Effects of longterm application of chemical fertilizer, pig manure, and rice straw on chemical and biochemical properties of reddish paddy soil. Chinese Journal of Applied Ecology, 2010, 21(4):921-929.][37] Reicosky DC, Dugas W A, Torbert H A. Tillage-induced soil carbon dioxide loss from different cropping systems[J]. Soil and Tillage Research, 1997, 41: 105-119. |
[1] | 马维伟, 孙文颖. 尕海湿地植被退化过程中有机碳及相关土壤酶活性变化特征[J]. 自然资源学报, 2020, 35(5): 1250-1260. |
[2] | 黄端, 闫慧敏, 池泓, 耿晓蒙, 邵奇慧. 2000—2015年江汉平原农田生态系统NPP时空变化特征[J]. 自然资源学报, 2020, 35(4): 845-856. |
[3] | 李冬雪, 李雨芩, 张珂豪, 马旭, 张树岩, 刘伟华, 车纯广, 崔保山. 黄河口典型潮沟土壤碳氮分布特征规律[J]. 自然资源学报, 2020, 35(2): 460-471. |
[4] | 黄先飞, 周运超, 张珍明. 土地利用方式下土壤有机碳特征及影响因素——以后寨河喀斯特小流域为例[J]. 自然资源学报, 2018, 33(6): 1056-1067. |
[5] | 张圣民, 许明祥, 张志霞, 李彬彬. 黄土高原不同地貌类型区农田土壤有机碳采样布点方法研究[J]. 自然资源学报, 2018, 33(4): 634-643. |
[6] | 张珍明, 周运超, 黄先飞, 田潇. 喀斯特小流域土壤有机碳密度空间异质性及影响因素[J]. 自然资源学报, 2018, 33(2): 313-324. |
[7] | 张萌萌, 刘梦云, 常庆瑞, 刘欢, 张杰. 1985—2015年陕西黄土台塬表层土壤有机碳空间分布[J]. 自然资源学报, 2018, 33(11): 2032-2045. |
[8] | 王修康, 戚兴超, 刘艳丽, 刘之广, 宋付朋, 李成亮. 泰山山前平原三种土地利用方式下土壤结构特征及其对土壤持水性的影响[J]. 自然资源学报, 2018, 33(1): 63-74. |
[9] | 王学春, 李军, 王红妮, 郝明德. 黄土高原冬小麦田土壤水分与小麦产量对降水和气温变化响应的模拟研究[J]. 自然资源学报, 2017, 32(8): 1398-1410. |
[10] | 王海候, 金梅娟, 陆长婴, 施林林, 周新伟, 沈明星, 季国军, 张永春. 秸秆还田模式对农田土壤碳库特性及产量的影响[J]. 自然资源学报, 2017, 32(5): 755-764. |
[11] | 黄麟, 曹巍, 吴丹, 巩国丽. 西藏高原生态系统服务时空格局及其变化特征[J]. 自然资源学报, 2016, 31(4): 543-555. |
[12] | 金宝石, 高灯州, 杨平, 王维奇, 曾从盛. 闽江河口区互花米草入侵不同年限下湿地土壤有机碳变化[J]. 自然资源学报, 2016, 31(4): 608-619. |
[13] | 缪建群, 杨文亭, 杨滨娟, 马艳芹, 黄国勤. 崇义客家梯田区生态系统服务功能及价值评估[J]. 自然资源学报, 2016, 31(11): 1817-1831. |
[14] | 郭正, 李军, 张玉娇, 曹裕, 张丽娜, 范鹏. 黄土高原不同降水量区旱作苹果园地水分生产力和土壤干燥化效应模拟与比较[J]. 自然资源学报, 2016, 31(1): 135-150. |
[15] | 张志霞, 许明祥, 师晨迪, 邱宇洁. 黄土丘陵区不同地貌单元土壤有机碳空间变异的尺度效应[J]. 自然资源学报, 2014, 29(7): 1173-1184. |
|