[1] United Nations. World Urbanization Prospects: The 2007 Revision Highlights [M]. New York: United Nations, 2008: 1-12. [2] Weng Q H. Remote Sensing of Impervious Surfaces [M]. London: CRC Press, 2008: 12-49. [3] Weng Q H. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64: 335-344. [4] Weng Q H. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends [J]. Remote Sensing of Environment, 2012, 117: 34-49. [5] Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote-sensing-comparative anatomy for cities [J]. International Journal of Remote Sensing, 1995, 16(12): 2165-2185. [6] Ward D, Phinn S R, Murray A T. Monitoring growth in rapidly urbanizing areas using remotely sensed data [J]. Professional Geographer, 2000, 52(3): 371-386. [7] Phinn S, Stanford M, Scarth P, et al. Monitoring the composition and form of urban environments based on the vegetation-impervious surface-soil (VIS) model by sub-pixel analysis techniques [J]. International Journal of Remote Sensing, 2002, 23(20): 4131-4153. [8] Wu C, Murray A T. Estimating impervious surface distribution by spectral mixture analysis [J]. Remote Sensing of Environment, 2003, 84(4): 493-505. [9] Lu D S, Weng Q H. Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery [J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(9): 1053-1062. [10] Lu D S, Li G Y, Moran E, et al. Mapping impervious surfaces with the integrated use of Landsat Thematic Mapper and radar data: A case study in an urban-rural landscape in the Brazilian Amazon [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66: 798-808. [11] Michishita R, Jiang Z B, Xu B. Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing [J]. Remote Sensing of Environment, 2012, 117: 3-18. [12] 岳文泽, 吴次芳. 基于混合光谱分解的城市不透水面分布估算[J]. 遥感学报, 2007, 11(6): 914-922. [13] 周存林, 徐涵秋. 福州城区不透水面的光谱混合分析与识别制图[J]. 中国图像图形学报, 2007, 12(5): 875-881. [14] 潘竟虎, 李晓雪, 冯兆东. 基于V-I-AP模型的兰州市不透水面与植被盖度时空格局分析[J]. 资源科学, 2010, 32(3): 520-527. [15] 李富祥, 李雪铭, 李华朋. 基于光谱混合分析方法的城市扩张过程研究[J]. 城市发展研究, 2010, 17(10): 119-124. [16] 王浩, 吴炳方, 李晓松, 等. 流域尺度的不透水面遥感提取[J]. 遥感学报, 2011, 15(2): 394-400. [17] 陈峰, 邱全毅, 郭青海, 等. CBERS-02B多光谱数据在城市不透水面估算中的可用性研究[J]. 遥感学报, 2011, 15(3): 630-639. [18] 刘勇. 城市增长与景观变化的多尺度研究——以杭州市为例. 杭州: 浙江大学, 2008. [19] 姚士谋. 中国大都市的空间扩展[M]. 合肥: 中国科技大学出版社, 1997. [20] 冯健, 周一星. 杭州市人口的空间变动与郊区化研究[J]. 城市规划, 2002, 26(1): 58-65. [21] USGS. Landsat 7 Science Data Users Handbook . http://landsathandbook.gsfc.nasa.gov/,1999-04-15. [22] Small C. The Landsat ETM+spectral mixing space [J]. Remote Sensing of Environment, 2004, 93(1): 1-17. [23] Small C. Estimation of urban vegetation abundance by spectral mixture analysis [J]. International Journal of Remote Sensing, 2001, 22(8): 1305-1334. [24] 覃志豪, Zhang M H, Arnon K, 等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001, 56(4): 456-465. [25] Lu D S, Weng Q H. Use of impervious surface in urban land-use classification [J]. Remote Sensing of Environment, 2006, 102(2): 146-160. |