自然资源学报 ›› 2012, Vol. 27 ›› Issue (6): 1044-1052.doi: 10.11849/zrzyxb.2012.06.014
耿元波1, 史晶晶1,2
收稿日期:
2011-10-28
修回日期:
2012-03-02
出版日期:
2012-06-20
发布日期:
2012-06-20
通讯作者:
耿元波
E-mail:gyb0741@sina.com
基金资助:
GENG Yuan-bo1, SHI Jing-jing1,2
Received:
2011-10-28
Revised:
2012-03-02
Online:
2012-06-20
Published:
2012-06-20
摘要: 区分草原土壤呼吸的主要目的在于准确估算草原生态系统土壤碳蓄积和碳源、 汇潜力,为预测气候变化提供科学依据。论文主要论述了稳定同位素13C在草原土壤呼吸区分方面的应用。主要在以下几个方面进行了阐述:①碳同位素区分土壤呼吸的两种主要标记方法——脉冲标记法和持续标记法,其中脉冲标记法包括单次脉冲标记法和重复脉冲标记法,持续标记法包括FACE实验标记法和13C自然丰度标记法,也介绍了利用核爆产生的14C标记;②应用碳稳定同位素区分土壤呼吸的理论依据和计算方法;③土壤呼吸稳定同位素组成的取样方法和测定,包括静态箱-Keeling Plot法、 静态箱平衡状态法和动态箱连接红外分析仪法等;④指出了减小静态箱-Keeling Plot法测定土壤呼吸碳同位素值的误差需采取的措施。
中图分类号:
耿元波, 史晶晶. 13C在草原土壤呼吸区分中的应用[J]. 自然资源学报, 2012, 27(6): 1044-1052.
GENG Yuan-bo, SHI Jing-jing. Application of the Stable Isotope 13C in the Partitioning of Soil Respiration in Grassland[J]. JOURNAL OF NATURAL RESOURCES, 2012, 27(6): 1044-1052.
[1] Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems [J]. Nature, 2001, 414: 169-172. [2] 李玉宁, 王关玉, 李伟. 土壤呼吸作用和全球碳循环[J]. 地学前缘, 2002, 9(2): 351-357. [3] Singh J, Gupta S. Plant decomposition and soil respiration in terrestrial ecosystems [J]. The Botanical Review, 1977, 43(4): 449-528. [4] Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods [J]. Soil Biology and Biochemistry, 2006, 38: 425-448. [5] Andren O, Schnurer J. Barley straw decomposition with varied levels of microbial grazing by Folsomia fimetaria (L.)(Collembola, Isotomidae) [J]. Oecologia, 1985, 68(1): 57-62. [6] Ke X, Winter K, Filser J. Effects of soil mesofauna and farming management on decomposition of clover litter: A microcosm experiment [J]. Soil Biology and Biochemistry, 2005, 37(4): 731-738. [7] Konate S, Le Roux X, Verdier B, et al. Effect of underground fungus-growing termites on carbon dioxide emission at the point-and landscape-scales in an African savanna [J]. Functional Ecology, 2003, 17(3): 305-314. [8] 崔玉亭, 卢进登, 韩纯儒. 集约高产农田生态系统有机物分解及土壤呼吸动态研究[J]. 应用生态学报, 1997, 8(1): 59-64. [9] Killham K, Yeomans C. Rhizosphere carbon flow measurement and implications:From isotopes to reporter genes [J]. Plant and Soil, 2001, 232: 9l-96. [10] Wiant H V. Has the contribution of litter decay to forest soil respiration been overestimated? [J]. Journal of Forestry, 1967, 65: 408-409. [11] Graetz D. Grassland //Meyer W B, Turner B L. Changes in Land-use and Land Cover: A Global Perspective. London: Cambridge University Press, 1994: 125-145. [12] Michael G R, Beverly E L. Interpreting, measuring, and modeling soil respiration [J]. Biogeochemistry, 2005, 73: 3-27. [13] Hunt J E, Kelliher F M, McSeveny T M, et al. Long-term carbon exchange in a sparse, seasonally dry tussock grassland [J]. Global Change Biology, 2004, 10: 1785-1800. [14] Wohlfahrt G, Anfang C, Bahn M, et al. Quantifying ecosystem respiration of a mountain meadow using eddy covariance, chambers and modelling [J]. Agricultural and Forest Meteorology, 2005, 128: 141-162. [15] Behera N, Pati D P. Carbon budget of protected tropical grassland with reference to primary production and total soil respiration [J]. Revue D Ecologie et de Biologie du Sol, 1986, 23(2): 167-181. [16] Klein D A. Seasonal carbon flow and decomposer parameter relationships in a semiarid grassland soil [J]. Ecology, 1977, 58: 184-190. [17] Kucera C L, Kirkham D R. Soil respiration studies in tallgrass prairie in Missouri [J]. Ecology, 1971, 52(5): 912-915. [18] Upadhyaya S D, Siddiqui S A, Singh V P. Seasonal variation in soil respiration of certain tropical grassland communities [J]. Tropical Ecology, 1981, 22: 157-161. [19] Hanson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributions to soil respiration: A review of methods and observations [J]. Biogeochemistry, 2000, 48: 115-146. [20] Saggar S, Hedley C, Mackay A D. Partitioning and translocation of photosynthetically fixed 14C in grazed hill pastures [J]. Biology and Fertility of Soils, 1997, 25(2): 152-158. [21] Swinnen J, Van Veen J A, Merckx R. 14C pulse-labelling of field-grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations [J]. Soil Biology and Biochemistry, 1994, 26(2): 161-170. [22] Simard S W, Durall D M, Jones M D. Carbon allocation and carbon transfer between Betula papyrifera and Pseudotsuga menziesii seedlings using a 13C pulse-labeling method [J]. Plant and Soil, 1997, 191(1): 41-55. [23] Wang Z P, Li L H, Han X G, et al. Dynamics and allocation of recently photo-assimilated carbon in an Inner Mongolia temperate steppe [J]. Environmental and Experimental Botany, 2007, 59(1): 1-10. [24] Hafner S, Unteregelsbacher S, Seeber E, et al. Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling [J]. Global Change Biology, 2011, 18(2): 528-538. [25] Wu Y B, Tan H C, Deng Y C, et al. Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling [J]. Global Change Biology, 2010, 16(8): 2322-2333. [26] Swinnen J. Evaluation of the use of a model rhizodeposition technique to separate root and microbial respiration in soil [J]. Plant and Soil, 1994, 165(1): 89-101. [27] Gaudinski J B, Trumbore S, Davidson E, et al. Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes [J]. Biogeochemistry, 2000, 51(1): 33-69. [28] 崔向慧, 李昊, 卢琦, 等. 全球FACE实验的进展与展望 [J]. 世界林业研究, 2007, 20(5): 1-6. [29] Bernoux M, Cerri C C, Neil C, et al. The use of stable carbon isotopes for estimating soil organic matter turnover rates [J]. Geoderma, 1998, 82: 43-58. [30] Dzurec R S, Boutton T W, Caldwell M M, et al. Carbon isotope ratios of soil organic matter and their use in assessing community composition changes in Curlew Valley, Utah [J]. Oecologia, 1985, 66: 17-24. [31] Kingston J D, Marino B D, Hill A. Isotopic evidence for neogene hominid paleoenvironments in the Kenya Rift Valley [J]. Science, 1984, 264: 955-959. [32] 刘启明, 王世杰, 朴河春, 等. 生态转换系统中土壤有机质变化的稳定碳同位素示踪研究进展[J]. 生态学杂志, 2002, 21(2): 58-60. [33] Rochette P, Flanagan L B, Gregorich E G. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13 [J]. Soil Science Society of America Journal, 1999, 63(5): 1207-1213. [34] Meharg A A. A critical review of labelling techniques used to quantify rhizosphere carbon-flow [J]. Plant and Soil, 1994, 166(1): 55-62. [35] Bowling D R, McDowell N G, Bond B J, et al. 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit [J]. Oecologia, 2002, 131(1): 113-124. [36] Steinmann K, Siegwolf R T W, Saurer M, et al. Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing [J]. Oecologia, 2004, 141(3): 489-501. [37] Ekblad A, Hogberg P. Analysis of δ13C of CO2 distinguishes between microbial respiration of added C4-sucrose and other soil respiration in a C3-ecosystem [J]. Plant Soil, 2000, 219(1/2): 197-209. [38] Ohlsson K E A, Bhupinderpal S, Holm S, et al. Uncertainties in static closed chamber measurements of the carbon isotopic ratio of soil-respired CO2 [J]. Soil Biology & Biochemistry, 2005, 37(12): 2273-2276. [39] Mora G, Raich J W. Carbon-isotopic composition of soil-respired carbon dioxide in static closed chambers at equilibrium [J]. Rapid Communications in Mass Spectrometry, 2007, 21(12): 1866-1870. [40] Bertolini T, Inglima I, Rubino M, et al. Sampling soil-derived CO2 for analysis of isotopic composition: a comparison of different techniques [J]. Isotopes in Environmental and Health Studies, 2006, 42(1): 57-65. [41] Amundson R, Stern L, Baisden T, et al. The isotopic composition of soil and soil-respired CO2 [J]. Geoderma, 1998, 82(1/3): 83-114. [42] Kayler Z E, Sulzman E W, Marshall J D, et al. A laboratory comparison of two methods used to estimate the isotopic composition of soil δ13CO2 efflux at steady state [J]. Rapid Communications in Mass Spectrometry, 2008, 22(16): 2533-2538. [43] Bowling D R, Tans P P, Monson R K. Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2 [J]. Global Change Biology, 2001, 7(2): 127-145. [44] Buchmann N, Kao W Y, Ehleringer J. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States [J]. Oecologia, 1997, 110(1): 109-119. [45] Flanagan L B, Brooks J R, Varney G T, et al. Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems [J]. Global Biogeochemical Cycles, 1996, 10(4): 629-640. [46] Sternberg L, Mulkey S S, Wright S J. Ecological interpretation of leaf carbon isotope ratios: Influence of respired carbon dioxide [J]. Ecology, 1989, 70: 1317-1324. [47] Buchmann N, Ehleringer J R. CO2 concentration profiles, and carbon and oxygen isotopes in C3 and C4 crop canopies [J]. Agricultural and Forest Meteorology, 1998, 89(1): 45-58. [48] Ometto J, Flanagan L B, Martinelli L A, et al. Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil [J]. Global Biogeochemical Cycles, 2002, 16(4): 1109. [49] Betson N R, Gttlicher S G, Hall M, et al. No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest [J]. Tree Physiology, 2007, 27: 749-756. [50] Ngao J, Epron D, Brechet C, et al. Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter [J]. Global Change Biology, 2005, 11(10): 1768-1776. [51] Keeling C D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas [J]. Geochimica et Cosmochimica Acta, 1958, 13(4): 322-334. [52] Pataki D E, Ehleringer J R, Flanagan L B, et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research [J]. Global Biogeochemical Cycles, 2003, 17(1): 1022. [53] Griffis T J, Zhang J, Baker J M, et al. Determining carbon isotope signatures from micrometeorological measurements: Implications for studying biosphere-atmosphere exchange processes [J]. Boundary-Layer Meteorology, 2007, 123(2): 295-316. [54] Zhang J, Griffis T J, Baker J M. Using continuous stable isotope measurements to partition net ecosystem CO2 exchange [J]. Plant Cell and Environment, 2006, 29(4): 483-496. [55] 孙伟, David W. 利用稳定性同位素区分河岸C4草地生态系统夜晚碳通量[J]. 湿地科学, 2008, 6(2): 271-277. [56] Chiodini G, Caliro S, Cardellini C, et al. Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas [J]. Earth and Planetary Science Letters, 2008, 274(3/4): 372-379. [57] Flanagan L B, Johnson B G. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland [J]. Agricultural and Forest Meteorology, 2005, 130(3/4): 237-253. [58] Betson N R, Gttlicher S G, Hall M, et al. No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest [J]. Tree Physiology, 2007, 27: 749-756. [59] Andrews J A, Harrison K G, Matamala R, et al. Separation of root respiration from total soil respiration using carbon-13 labeling during Free-Air Carbon Dioxide Enrichment (FACE) [J]. Soil Science Society of America Journal, 1999, 63(5): 1429-1435. [60] Joos O, Saurer M, Heim A, et al. Can we use the CO2 concentrations determined by continuous-flow isotope ratio mass spectrometry from small samples for the Keeling plot approach? [J]. Rapid Communications in Mass Spectrometry, 2008, 22(24): 4029-4034. [61] Takahashi Y, Liang N. Development of chamber-based sampling technique for determination of carbon stable isotope ratio of soil respired CO2 and evaluation of influence of CO2 enrichment in chamber headspace [J]. Geochemical Journal, 2007, 41(6): 493-500. [62] Zobitz J M, Keener J P, Schnyder H, et al. Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research [J]. Agricultural and Forest Meteorology, 2006, 136(1/2): 56-75. [63] Tu K P, Brooks P D, Dawson T E. Using septum-capped vials with continuous-flow isotope ratio mass spectrometric analysis of atmospheric CO2 for Keeling plot applications [J]. Rapid Communications in Mass Spectrometry, 2001, 15(12): 952-956. |
[1] | 张珺, 任鸿瑞. 人类活动对锡林郭勒盟草原净初级生产力的影响研究[J]. 自然资源学报, 2017, 32(7): 1125-1133. |
[2] | 王贵珍, 马素洁, 杨思维, 牛钰杰, 花立民. 基于RUE的不同草地类生态评价研究——以河西走廊为例[J]. 自然资源学报, 2017, 32(4): 582-594. |
[3] | 胡振通, 孔德帅, 魏同洋, 靳乐山. 草原生态补偿:减畜和补偿的对等关系[J]. 自然资源学报, 2015, 30(11): 1846-1859. |
[4] | 巴图娜存, 胡云锋, 毕力格吉夫, 刘纪远, 甄霖. 蒙古高原乌兰巴托—锡林浩特草地样带植物物种的空间分布[J]. 自然资源学报, 2015, 30(1): 24-36. |
[5] | 任继周. 放牧,草原生态系统存在的基本方式——兼论放牧的转型[J]. 自然资源学报, 2012, 27(8): 1259-1275. |
[6] | 刘洪, 郭文利, 郑秀琴. 内蒙古天然草地资源精细化气候区划研究[J]. 自然资源学报, 2011, 26(12): 2088-2099. |
[7] | 杨兆平, 欧阳华, 徐兴良, 杨文斌. 五道梁高寒草原土壤水分和植被盖度空间异质性的地统计分析[J]. 自然资源学报, 2010, 25(3): 426-434. |
[8] | 耿元波, 罗光强, 李明峰. 锡林河流域典型草原碳素生物小循环研究[J]. 自然资源学报, 2010, 25(10): 1709-1717. |
[9] | 张峰, 王桥, 李营. 呼伦贝尔草原植被覆盖时空动态变化监测定量方法研究[J]. 自然资源学报, 2010, 25(10): 1698-1708. |
[10] | 程迁, 莫兴国, 王永芬, 林忠辉. 羊草草原碳循环过程的模拟与验证[J]. 自然资源学报, 2010, 25(1): 60-70. |
[11] | 闫伟兄, 陈素华, 乌兰巴特尔, 魏玉蓉, 杨丽萍. 内蒙古典型草原区植被NPP对气候变化的响应[J]. 自然资源学报, 2009, 24(9): 1625-1634. |
[12] | 许中旗, 李文华, 许晴, 闵庆文, 王英舜, 吴雪宾. 人为干扰对典型草原土壤碳密度及生态系统碳贮量的影响[J]. 自然资源学报, 2009, 24(4): 621-629. |
[13] | 张萍, 哈斯, 王帅, 张素红. 呼伦贝尔沙质草原风蚀坑积沙区的植被分带性[J]. 自然资源学报, 2008, 23(2): 237-244. |
[14] | 许中旗, 李文华, 闵庆文, 许晴. 锡林河流域生态系统服务价值变化研究[J]. 自然资源学报, 2005, 20(1): 99-104. |
[15] | 宝音陶格涛, 刘美玲. 退化羊草草原在浅耕翻处理后植物群落生物量组成动态研究[J]. 自然资源学报, 2003, 18(5): 544-551. |
|