[1] Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science,2004,304:1623-1627.
[2] Eswaran H, Vandenberg E, Reich P. Organic-carbon in soils of the world [J]. Soil Science Society of America Journal,1993,57(1): 192-194.
[3] Sims P, Singh J. The structure and function of ten western North American grasslands: III. Net primary production, turnover and efficiencies of energy capture and water use [J]. The Journal of Ecology,1978,66(2):573-597.
[4] Sala O, Parton W, Joyce L, et al. Primary production of the central grassland region of the United States [J]. Ecology,1988,69(1): 40-45.
[5] Bowden R D, Newkirk K M, Rullo G M. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions [J]. Soil Biology & Biochemistry,1998,30(12):1591-1597.
[6] Rodriguez-Iturbe I, D'Odorico P, Porporato A, et al. On the spatial and temporal links between vegetation, climate, and soil moisture [J]. Water Resources Research,1999,35(12):3709-3722.
[7] Knapp A K, Smith M D. Variation among biomes in temporal dynamics of aboveground primary production [J]. Science,2001, 291(5503):481-484.
[8] Peterjohn W T, Melillo J M, Steudler P A, et al. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures [J]. Ecological Applications,1994,4(3):617-625.
[9] Western A W, Zhou S L, Grayson R B, et al. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes [J]. Journal of Hydrology,2004,286(1/4):113-134.
[10] 黄奕龙,陈利顶,傅伯杰,等.黄土丘陵小流域地形和土地利用对土壤水分时空格局的影响[J].第四纪研究,2003,23(3): 334-342.
[11] Qiu Y, Fu B J, Wang J, et al. Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau, China [J]. Journal of Arid Environments,2001,49:723-750.
[12] Qiu Y, Fu B J, Wang J, et al. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China [J]. Journal of Hydrology,2001,240(3/4):243-263.
[13] Hoyos N, Comerford N B. Land use and landscape effects on aggregate stability and total carbon of Andisols from the Colombian Andes [J]. Water,2005,129:268-278.
[14] 孙文义,郭胜利.天然次生林与人工林对黄土丘陵沟壑区深层土壤有机碳氮的影响[J].生态学报,2010,30(10):2611-2620.
[15] 韩建平,贾宁凤.土地利用与地形因子关系研究——以砖窑沟流域为例[J].中国生态农业学报,2010,18(5):1071-1075.
[16] 中国科学院水利部西北水土保持研究所.黄土高原综合治理试验示范区专题地图集[M].北京:测绘出版社,1991.
[17] 杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000:49-115.
[18] 毕银丽,王百群,郭胜利,等.黄土丘陵区坝地系统土壤养分特征及其及侵蚀环境的关系I.坝地土壤的理化性状及其数值分析[J].土壤侵蚀与水土保持学报,1997,3(3):1-9.
[19] 毕银丽,王百群,郭胜利,等.黄土丘陵区坝地系统土壤养分特征及其与侵蚀环境的关系Ⅱ.坝系土壤粒径分布及各粒径的养分状况[J].土壤侵蚀与水土保持学报,1997,3(4):37-43.
[20] Jobbágy E, Jackson R. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecological Applications,2008,10(2):423-436.
[21] Lal R. Soil erosion and the global carbon budget [J]. Environment International,2003,29(4):437-450.
[22] 白红英,唐克丽.坡地土壤侵蚀与养分流失过程的研究[J].水土保持通报,1991,11(3):14-19.
[23] 李勇,白玲玉.黄土高原淤地坝对陆地碳贮存的贡献[J].水土保持学报,2003,17(2):1-4.
[24] 沈善敏.无机氮对土壤氮矿化与固定的影响——兼论土壤氮的"激发效应"[J].土壤学报,1986,23(1):10-16.
[25] French N R, Steinhorst R K, Swift D M. Grassland biomass trophic pyramids//French N R. Perspectives in Grassland Ecology. New York: Springer-verlag,1979:59-87.
[26] O'Brien S L, Jastrow J D, Grimley D A, et al. Moisture and vegetation controls on decadal-scale accrual of soil organic carbon and total nitrogen in restored grasslands [J]. Global Change Biology,2010,16(9):2573-2588.
[27] Russell A E, Raich J W, Valverde-Barrantes O J, et al. Tree species effects on soil properties in experimental plantations in tropical moist forest [J]. Soil Science Society of America Journal,2007,71(4):1389-1397.
[28] 陈洪松,邵明安.黄土区深层土壤干燥化程度的评价标准[J].水土保持学报,2004,18(3):164-166.
[29] 景可,郑粉莉.黄土高原植被建设的经验教训与前景分析[J].水土保持研究,2004,11(4):25-27.
[30] 胡中民,于贵瑞,王秋凤,等.生态系统水分利用效率研究进展[J].生态学报,2009,29(3):1498-1507.
[31] Jackson R, Canadell J, Ehleringer J, et al. A global analysis of root distributions for terrestrial biomes [J]. Oecologia,1996,108(3):389-411. |