[1] 孙睿, 朱启疆. 中国陆地植被第一性生产力及季节变化研究[J]. 地理学报, 2000, 55(1): 36-45.
[2] 孙睿, 朱启疆. 陆地植被净第一性生产力的研究[J]. 应用生态学报, 1999, 10(6): 757-760.
[3] Hunt E R, Piper S C, Nemani R, et al. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model[J]. Global Biogeochemical Cycles, 1996, 10: 431-456.
[4] 孙睿, 朱启疆. 气候变化对中国陆地植被净第一性生产力影响的初步研究[J]. 遥感学报, 2001, 5(1): 58-61.
[5] 朴世龙, 方精云, 郭庆华. 利用CASA模型模拟估算我国植被净第一性生产力[J]. 植物生态学报, 2001, 25(5): 603-608.
[6] Running S W, Hunt E R. Generalization of a forest ecosystem process model for other biomes, Biome-BGC, and an application for global-scale models[M]//Ehleringer J R, Field C B. Scaling Physiological Processes: Leaf to Globe. San Diego: Academic Press, 1993.
[7] McGuire A D, Melillo J M, Kicklighter D W, et al. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates[J]. Journal of Biogeography, 1995, 22: 785-796.
[8] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production:A process model based global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841.
[9] Field C B,Randerson J T, Malmstrom C M.Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing of Environment, 1995, 51: 74-88.
[10] Baker I T, Denning A S, Hanan N, et al. Simulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV Tower using SiB2.5[J]. Global Change Biology, 2003, 9: 1262-1277.
[11] Baker I T, Denning A S, Prihodko L, et al. Global Net Ecosystem Exchange (NEE) of CO2 . http://www.daac.ornl.gov.Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. 2008.
[12] Thornton P E, Law B E, Gholz H L, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agricultural and Forest Meteorology, 2002, 113: 185-222.
[13] Turner D P, Ritts W D, Law B E, et al. Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States[J]. Biogeosciences Discussions, 2007, 4: 1093-1135.
[14] 侯满平. 黄淮海平原农业结构调整及农业发展战略研究. 北京: 中国农业大学, 2004.
[15] 中国科学院南京土壤研究所. 中国土壤图集[M]. 北京: 地图出版社, 1986.
[16] 张福春, 王德辉, 丘宝剑. 中国农业物候图集[M]. 北京: 科学出版社, 1987.
[17] Chen J M, Deng F, Chen M Z. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44: 2230-2238.
[18] 翁笃鸣, 孙治安. 我国山地气温直减率的初步研究[J]. 地理研究, 1984, 3(2): 24-34.
[19] http://www.unc.edu/courses/2007fall/geog/711/001/software/mtclim/.
[20] Zhong Q, Su G L, Zhang J E, et al. Identificaiton of important factors for water vapor flux and CO2 exchange in a cropland[J]. Ecological Modelling, 2010, 221: 575-581.
[21] 林业科学数据中心. 第6次一类清查森林资源统计数据. http://www.cfsdc.org/.
[22] 李文华, 李飞. 中国森林资源研究[M]. 北京: 中国林业出版社, 1996: 12-13.
[23] Schmid S, Zierl B, Bugmann H. Analyzing the ecosystem carbon dynamics of central European forests: Comparison of Biome-BGC simulations with measurements[J]. Regional Environmental Change, 2006, 6: 167-180.
[24] Cienciala E, Tatarinov F A. Application of Biome-BGC model to managed forests: 2. Comparison with long-term observations of stand production for major tree species[J]. Forest Ecology and Management, 2006, 237: 252-266.
[25] White M A, Thornton P E, Running S W, et al. Parameterization and sensitivity analysis of the Biome-BGC terrestrial ecosystem model: Net primary production controls[J]. Earth Interactions, 2000, 43: 1-85.
[26] Thornton P E. User's Guide for Biome-BGC, Version 4.1.1. ftp://daac.ornl.gov/data/model_archive/BIOME_BGC/biome_bgc_4.1.1/comp/bgc_users_guide_411.pdf.2000.
[27] White M A, Running S W, Thornton P E. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest[J]. International Journal of Biometeorology, 1999, 42: 139-145.
[28] Falge E, Baldocchi D D, Tenhunen J D, et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements[J]. Agricultural and Forest Meteorology, 2002, 113: 53-74.
[29] Lei H M, Yang D W. Seasonal and interannual variations in carbon dioxide exchange over a cropland in the North China Plain[J]. Global Change Biology, 2010, 16: 2944-2957.
[30] 李琪, 胡正华, 薛红喜, 等. 淮河流域典型农田生态系统碳通量变化特征[J]. 农业环境科学学报, 2009, 28(12): 2545-2550.
[31] 曲奕威. 豫北平原冬小麦-夏玉米典型农田生态系统碳通量的研究. 郑州: 河南农业大学, 2008.
[32] 李俊, 于强, 孙晓敏, 等. 华北平原农田生态系统碳交换及其环境调控机制[J]. 中国科学D辑: 地球科学, 2006, 36(增刊1): 210-223.
[33] Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial primary production[J]. Nature, 1993, 363: 234-240.
[34] Liu J, Chen J M, Cihlar J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs[J]. Remote Sensing of Environment, 1997, 62: 158-175.
[35] 陶波, 李克让, 邵雪梅, 等. 中国陆地净初级生产力时空特征模拟[J]. 地理学报, 2003, 58(3): 372-380.
[36] Zhang Y Q, Yu Q, Jiang J, et al. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau[J]. Global Change Biology, 2008, 14: 757-767.
[37] http://tongji.cnki.net/Kns55/Navi/Navidefault.aspx?uid=WEEvREdiSUtucElBV1VFSHc1ZjBzVEszbDRmSEpZdz0=&p=.
[38] http://www.china001.com/show_hdr.php?xname=PPDDMV0&dname=78NSK41&xpos=9.
[39] 张希彪. 陇东黄土高原沟壑区农业资源生产潜力及其开发[J]. 水土保持学报, 2004, 11(3): 95-97. |