自然资源学报 ›› 2011, Vol. 26 ›› Issue (10): 1811-1820.doi: 10.11849/zrzyxb.2011.10.017
• 专题论坛 • 上一篇
杨毅1,2, 黄玫1, 刘洪升1, 刘华杰3
收稿日期:
2011-03-23
修回日期:
2011-05-30
出版日期:
2011-10-20
发布日期:
2011-10-20
通讯作者:
刘洪升
E-mail:hshliubj@126.com
作者简介:
杨毅(1986- ),女,河北衡水人,硕士研究生,主要研究全球变化与生态模拟。E-mail: yangyi208@gmail.com
基金资助:
国家自然科学基金面上项目(31070393);国家973项目(2010CB833503);中国极地科学战略研究基金项目(20080205)。
YANG Yi1,2, HAUNG Mei1, LIU Hong-sheng1, LIU Hua-jie3
Received:
2011-03-23
Revised:
2011-05-30
Online:
2011-10-20
Published:
2011-10-20
摘要: 土壤呼吸的温度敏感性和适应性是影响生态系统碳、氮循环的两个关键指标。论文综述了土壤呼吸对温度变化响应的最新研究进展和存在的问题,指出土壤有机质的质量和水溶性碳含量、土壤微生物种群结构和酶活性等因素是影响土壤呼吸的温度敏感性和适应性的主要因素。这些因素对土壤呼吸温度敏感性和适应性影响的机理不同,土壤呼吸的温度敏感性主要受上述因素的状态影响,而土壤呼吸的温度适应性则主要取决于上述因素的变化过程。例如平均温度、微生物生物量、呼吸底物质量和酶活性是影响土壤呼吸温度敏感性的重要因素,而温度的变化幅度、微生物种群结构变化、呼吸底物有效性和酶的最适温度的改变则影响土壤呼吸对温度的适应性。鉴于土壤呼吸的温度敏感性和适应性是两个密切相关的生物学过程指标,建议在陆地生态系统碳循环的研究中综合考虑这两个过程的交互作用。
中图分类号:
S154.3
杨毅, 黄玫, 刘洪升, 刘华杰. 土壤呼吸的温度敏感性和适应性研究进展[J]. 自然资源学报, 2011, 26(10): 1811-1820.
YANG Yi, HAUNG Mei, LIU Hong-sheng, LIU Hua-jie. The Interrelation between Temperature Sensitivity and Adaptability of Soil Respiration[J]. JOURNAL OF NATURAL RESOURCES, 2011, 26(10): 1811-1820.
[1] 方精云,王娓.作为地下过程的土壤呼吸:我们理解了多少?[J] 植物生态学报,2007,31(3):345-347. [2] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus,1992,44(2):81-99. [3] Davidson E A, Janssens I A, LuoY Q. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10 [J]. Global Change Biology,2006,12(2):154-164. [4] 刘立新,董云社,等.内蒙古锡林河流域土壤呼吸的温度敏感性[J].中国环境科学,2007,27(2):226-230. [5] 刘洪升,刘华杰,王智平,等.土壤呼吸的温度敏感性[J].地理科学进展,2008, 27(4):51-60. [6] Fang C, Smith P, Moncrieff J B, et al. Similar response of labile and resistant soil organic matter pools to changes in temperature [J]. Nature,2005,433(7021):57-59. [7] Cornelissen J H, et al. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes [J]. Ecology Letters,2007,10(7):619-627. [8] Koch O, Tscherko D, Kandeler E. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils [J]. Global Biogeochemical Cycles,2007,21(4),GB4017, doi: 10.1029/2007GB002983. [9] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J]. Nature, 2006,440(7081):165-173. [10] Conant R T, Steinweg J M, Haddix M L, et al. Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance [J]. Ecology,2008, 89(9):2384-2391. [11] Balser T C, Wixon D L. Investigating biological control over soil carbon temperature sensitivity [J]. Global Change Biology,2009, 15(12):2935-2949. [12] Atkin O K, Scheurwater I, Pons T L. High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric [J]. Global Change Biology,2006,12(3):500-515. [13] Bradford M A, Davies C A, Frey S D, et al. Thermal adaptation of soil microbial respiration to elevated temperature [J]. Ecology Letters,2008,11(12):1316-1327. [14] Atkin O K, Tjoelker M G. Thermal acclimation and the dynamic response of plant respiration to temperature [J]. Trends in Plant Science,2003,8(7):343-351. [15] Yuste J C, Ma S, et al. Plant-soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux [J]. Biogeochemistry,2010, 98(1/3):127-138. [16] Jarvis P , Linder S. Constraints to growth of boreal forests [J]. Nature,2000,405(6789):904-905. [17] Oechel W C, Vourlitis G L, Hastings S J, et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming [J]. Nature,2000,406(6799):978-981. [18] Luo Y Q, Wu L H, et al. Elevated CO2 differentiates ecosystem carbon processes: Deconvolution analysis of Duke Forest FACE data [J]. Ecological Monographs,2001,71(3):357-376. [19] Rustad L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming [J]. Oecologia,2001,126(4):543-562. [20] Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system [J]. Science,2002, 298(5601):2173-2176. [21] Eliasson P E, McMurtrie R E, Pepper D A, et al. The response of heterotrophic CO2 flux to soil warming [J]. Global Change Biology,2005,11(1):167-181. [22] Misson L, et al. Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: A synthesis based on FLUXNET data [J]. Agricultural and Forest Meteorology,2007,144(1/2):14-31. [23] Grogan P, Jonasson S. Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types [J]. Global Change Biology,2005,11(3):465-475. [24] Denton M D, Sasse C, et al. Root distributions of Australian herbaceous perennial legumes in response to phosphorus placement [J]. Functional Plant Biology,2006,33(12):1091-1102. [25] Ågren G I, Wetterstedt J Å M. What determines the temperature response of soil organic matter decomposition? [J] Soil Biology & Biochemistry,2007,39(7):1794-1798. [26] Hartley I P, Ineson P. Substrate quality and the temperature sensitivity of soil organic matter decomposition [J]. Soil Biology & Biochemistry,2008,40(7): 1567-1574. [27] Hall M, Stueckler C, et al. Asymmetric bioreduction of C=C bonds using enoate reductases OPR1, OPR3 and YqjM: Enzyme-based stereocontrol [J]. Advanced Synthesis & Catalysis,2008, 350(3):411-418. [28] Appel H M. Phenolics in ecological interactions: The importance of oxidation [J]. Journal of Chemical Ecology,1993,19(7): 1521-1552. [29] Fenner N, Freeman C, Reynolds B. Observations of a seasonally shifting thermal optimum in peat land carbon-cycling processes: Implications for the global carbon cycle and soil enzyme methodologies [J]. Soil Biology & Biochemistry,2005,37(10): 1814-1821. [30] Hurry V M, Keerberg O, Parnik T, et al. Cold-hardening results in increased activity of enzymes involved in carbon metabolism in leaves of winter rye (Secale cereale L) [J]. Planta,1995,195(4):554-562. [31] Malcolm G M, Lopez-Gutierrez J C, Koide R T, et al. Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi [J]. Global Change Biology,2008,14(5):1169-1180. [32] Lange O L, Green T G A. Lichens show that fungi can acclimate their respiration to seasonal changes in temperature [J]. Oecologia,2005,142(1):11-19. [33] 孙晓敏,温学发,于贵瑞,等.中亚热带季节性干旱对千烟洲人工林生态系统碳吸收的影响[J].中国科学D辑:地球科学,2006, 36(增刊1):103-110. [34] 王小国,朱波,王艳强,等.不同土地利用方式下土壤呼吸及其温度敏感性[J].生态学报,2007(5),27:1960-1968. [35] Liu H S, Li L H, Han X G, et al. Respiratory substrate availability plays a crucial role in the response of soil respiration to environmental factors [J]. Applied Soil Ecology,2006,32(3):284–292. [36] Kirschbaum M U F. Will changes in soil organic matter act as a positive or negative feedback on global warming? [J] Biogeochemistry,2000,48(1):21-51. [37] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record [J]. Nature,2010,464(7288): 579-582. [38] Wetterstedt J A M, Persson T, et al. Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates [J]. Global Change Biology,2010,16(6):1806-1819. [39] Bosatta E, Ågren G I. Soil organic matter quality interpreted thermodynamically [J]. Soil Biology & Biochemistry,1999,31(13): 1889-1891. [40] Ågren G I. Temperature dependence of old soil organic matter [J]. AMBIO,2000,29(1):56-57. [41] Ågren G I, Bosatta E. Reconciling differences in predictions of temperature response of soil organic matter [J]. Soil Biology & Biochemistry,2002,34(1):129-132. [42] Knorr W, Prentice I C, House J I, et al. Long-term sensitivity of soil carbon turnover to warming [J]. Nature,2005,433(7023): 98-301. [43] Fierer N, Craine J M, Mclauchlan K, et al. Litter quality and the temperature sensitivity of decomposition [J]. Ecology,2005, 86(2): 320-326. [44] Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest [J]. Global Change Biology,1998,4(2):217-227. [45] Giardina C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature [J]. Nature,2000, 404(6780):858-861. [46] Conen F, Karhu K, Leifeld J, et al. Temperature sensitivity of young and old soil carbon-Same soil, slight differences in 13C natural abundance method, inconsistent results [J]. Soil Biology & Biochemistry,2008,40(10):2703-2705. [47] Fang C, Smith P, Smith J U. Is resistant soil organic matter more sensitive to temperature than the labile organic matter? [J] Biogeochemistry,2006,3(1):65-68. [48] Gershenson A, Bader N, Cheng W. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition [J]. Global Change Biology,2009,15(1):176-183. [49] Fisk M C, Ruether K F, Yavitt J B. Microbial activity and functional composition among northern peat land ecosystems [J]. Soil Biology & Biochemistry, 2003, 35(4):591-602. [50] Kemmitt S J, Lanyon C V, Waite L S, et al. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—A new perspective [J]. Soil Biology & Biochemistry, 2008, 40(1):61-73. [51] Chapin F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology [M]. Springer, New York,2002. [52] Biasi R. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs [J]. Rapid Communications in Mass Spectrometry,2005,19(11):1401-1408. [53] Kätterer T, Reichstein M, Andrén O, et al. Temperature dependence of organic matter decomposition: A critical review using literature data analyzed with different models [J]. Biology and Fertility of Soils,1998,27(3):258-262. [54] Cleveland C C, Nemergut D R, Schmidt S K, et al. Increase in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition [J]. Biogeochemistry,2006,doi 10.1007/ s10533- 006-9065-z. [55] Janssens I A, Pilegaard K. Large seasonal changes in Q10 of soil respiration in a beech forest [J]. Global Change Biology, 2003, 9(6):911-918. [56] Jassal R S, Black T A, Novak M D, et al. Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand [J]. Global Change Biology,2008,14(6):1305-1318. [57] Almagro M, Lopez J, Querejeta J I, et al. Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem [J]. Soil Biology and Biochemistry, 2009, 41(3):594-605. [58] McCulley R L, Boutton T W, Archer S R. Soil respiration in a subtropical savanna parkland: Response to water additions [J]. Soil Science Society of America Journal,2007,71(3):820-828. [59] Gaumont-Guay D, Black T A, Griffis T J, et al. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand [J]. Agricultural and Forest Meteorology,2006,140(1/4):220-235. [60] Wang C K, Yang J Y, Zhang Q Z. Soil respiration in six temperate forests in China [J]. Global Change Biology,2006,12(11): 2103-2114. [61] Smith V R. Moisture, carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic island [J]. Soil Biology and Biochemistry,2005,37(1):81-91. [62] Conant R T, Dalla-Betta P, Klopatek C C, et al. Controls on soil respiration in semiarid soils [J]. Soil Biology and Biochemistry, 2004, 36(6):945-951. [63] Bowden R D, Newkirk K M, Rullo G M. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions [J]. Soil Biology and Biochemistry,1998,30(12):1591-1597. [64] 周涛,史培军.土地利用变化对中国土壤碳储量变化的间接影响[J].地球科学进展,2006,21(2):138-143. |
[1] | 覃艺, 张廷斌, 易桂花, 魏澎涛, 杨达. 2000年以来内蒙古生长季旱情变化遥感监测及其影响因素分析[J]. 自然资源学报, 2021, 36(2): 459-475. |
[2] | 王珂依, 刘园, 刘布春, 邱美娟, 杨晓娟, 张玥滢, 吴昕悦, 肖楠舒, 庞静漪. 1958—2015年长江中下游寒潮时空演变特征[J]. 自然资源学报, 2020, 35(12): 3029-3038. |
[3] | 尹朝静, 李谷成, 高雪. 气候因素对水稻单产影响的实证分析—基于湖北农户层面的分层模型[J]. 自然资源学报, 2017, 32(8): 1433-1444. |
[4] | 高原, 刘普幸, 姚玉龙, 雍国正, 王允. 基于遥感的石河子绿洲冷岛效应时空变化特征及其影响因子分析[J]. 自然资源学报, 2015, 30(8): 1319-1331. |
[5] | 李梦, 金宏春, 陈勇航, 崔彩霞, 马骁骏, 庄雯雯, 李嘉栋, 马彦颖. 天山低层云水资源中冰粒子物理属性年际变化[J]. 自然资源学报, 2015, 30(4): 696-704. |
[6] | 魏星, 王品, 张朝, 陈一, 宋骁, 帅嘉冰, 史培军, 陶福禄. 温度三区间理论评价气候变化对作物产量影响[J]. 自然资源学报, 2015, 30(3): 470-479. |
[7] | 徐浩杰, 杨太保. 柴达木盆地植被生长时空变化特征及其对气候要素的响应[J]. 自然资源学报, 2014, 29(3): 398-409. |
[8] | 张丽文, 黄敬峰, 王秀珍. 气温遥感估算方法研究综述[J]. 自然资源学报, 2014, 29(3): 540-552. |
[9] | 周义贵, 郝凯婕, 李贤伟, 范川, 陈栎霖, 王谢, 王晓红. 川西亚高山不同土地利用类型对土壤微生物量碳动态特征的影响[J]. 自然资源学报, 2014, 29(11): 1944-1956. |
[10] | 许格希, 郭泉水, 牛树奎, 裴顺祥, 朱莉, 朱妮妮. 近50 a来海南岛不同气候区气候变化特征研究[J]. 自然资源学报, 2013, 28(5): 799-810. |
[11] | 张璇, 牛文全, 甲宗霞. 灌溉后通气对盆栽番茄土壤酶活性的影响[J]. 自然资源学报, 2012, 27(8): 1296-1303. |
[12] | 崔耀平, 刘纪远, 胡云锋, 邴龙飞, 陶福禄, 王军邦. 中国植被生长的最适温度估算与分析[J]. 自然资源学报, 2012, 27(2): 281-292. |
[13] | 张舒, 申双和, 温学发, 张心昱, 孙晓敏, 王辉民. 温度和水分对中亚热带人工林生态系统呼吸的调控作用[J]. 自然资源学报, 2012, 27(12): 2057-2070. |
[14] | 李猛, 段文标, 陈立新, 刘洋, 高志强. 红松阔叶混交林林隙极端地面温度的地统计学分析[J]. 自然资源学报, 2012, (10): 1688-1695. |
[15] | 张善红, 白红英, 高翔, 贺映娜, 任园园. 太白山植被指数时空变化及其对区域温度的响应[J]. 自然资源学报, 2011, 26(8): 1377-1386. |
|