自然资源学报 ›› 2011, Vol. 26 ›› Issue (10): 1801-1810.doi: 10.11849/zrzyxb.2011.10.016
张力小, 胡秋红
收稿日期:
2011-01-24
修回日期:
2011-05-03
出版日期:
2011-10-20
发布日期:
2011-10-20
作者简介:
张力小(1977- ),男,山东沂水人,副教授,博士,主要从事资源过程代谢与生态核算研究。E-mail: zhanglixiao@bnu.edu.cn
基金资助:
国家自然科学基金项目(40901293);国家重点实验室专项基金课题(11Y04ESPCN);中央高校基本科研业务费专项资金(2010)。
ZHANG Li-xiao, HU Qiu-hong
Received:
2011-01-24
Revised:
2011-05-03
Online:
2011-10-20
Published:
2011-10-20
摘要: 物质能量代谢分析已成为城市生态系统研究的一个重要视角与工具。论文在对当前各种代谢概念与方法进行系统梳理和分析的基础上,借鉴资源科学相关研究的最新成果,重新整合城市代谢相关的研究内容和分析边界,将物质能量代谢概念拓展为资源代谢的概念,试图涵盖物质性资源和非物质性资源、能量性和非能量性资源,并引入资源来解决城市资源代谢的生态统一核算问题,实现资源稀缺性和有用性的有效度量。此外,引入资源流过程分析特别是网络分析的方法,可打破传统代谢研究"灰箱"分析的局限,实现资源流在系统内部流动的代谢路径跟踪,实现城市生态系统结构化与网络化的深度分析,从而完善城市代谢研究的理论与方法体系。
中图分类号:
X171.1
张力小, 胡秋红. 城市物质能量代谢相关研究述评——兼论资源代谢的内涵与研究方法[J]. 自然资源学报, 2011, 26(10): 1801-1810.
ZHANG Li-xiao, HU Qiu-hong. A Critical Review on Material and Energetic Metabolism for Urban Ecosystem: Resource Metabolism and Its Contents[J]. JOURNAL OF NATURAL RESOURCES, 2011, 26(10): 1801-1810.
[1] 黄书礼.都市生态经济与能量[M].台北:詹氏书局,2004. [2] 陶在朴.生态包袱与生态足迹——可持续发展的重量及面积观念[M].北京:经济科学出版社,2003. [3] Schandl H, Schulz N. Changes in the United Kingdom’s natural relations in terms of society’s metabolism and land-use from 1850 to the present day [J]. Ecological Economics,2002,41(2):203-221. [4] Fischer-Kowalski M. Society’s metabolism: The intellectual history of materials flow analysis, Part I: 1860-1970 [J]. Journal of Industrial Ecology,1998,2(1):61-78. [5] Krausmann F, Haberl H, Schulz N B, et al. Land-use change and socio-economic metabolism in Austria—Part I: Driving forces of land-use change: 1950-1995 [J]. Land Use Policy,2003,20(1):1-20. [6] Xu M, Jia X P, Shi L, et al. Societal metabolism in Northeast China: Case study of Liaoning Province [J]. Resources, Conservation and Recycling,2008,52(8/9):1082-1086. [7] Cusso X, Garrabou R, Tello E. Social metabolism in an agrarian region of Catalonia (Spain) in 1860-1870: Flows, energy balance and land use [J]. Ecological Economics,2006,58(1):49-65. [8] Niza S, Ferrao P. A transitional economy’s metabolism: The case of Portugal [J]. Resources, Conservation and Recycling, 2006, 46(3): 265-280. [9] Wolman A. The metabolism of cities [J]. Scientific American,1965,213(3):179. [10] Newcombe K, Kalina J D, Aston A R. The metabolism of a city: The case of Hong Kong [J]. AMBIO,1978,7(1):3-15 [11] Warren-Rhodes K, Koenig A. Escalating trends in the urban metabolism of Hong Kong: 1971-1997 [J]. AMBIO,2001,30(7): 429-438. [12] Newman P W. Sustainability and cities: Extending the metabolism model [J]. Landscape and Urban Planning, 1999, 44(4): 219-226. [13] Hendriks C, Obernosterer R, Muller D, et al. Material flow analysis: A tool to support environmental policy decision making: Case studies on the city of Vienna and the Swiss lowlands [J]. Local Environment, 2000, 5(3): 311-328. [14] Sahely H R, Dudding S, Kennedy C A. Estimating the urban metabolism of Canadian cities: Greater Toronto area case study [J]. Canadian Journal of Civil Engineering,2003, 30(2): 468-453. [15] Chambers N, Heap R, Jenkin N E A. A resource flow and ecological footprint analysis of greater London , 2002. [16] 徐一剑,张天柱,石磊,等.贵阳市物质流分析[J].清华大学学报:自然科学版,2004,44(12):1688-1691. [17] 颜文洪,刘益民,黄向,等.深圳城市系统代谢的变化与废物生成效应[J].城市问题,2003(1):40-44. [18] 于术桐,黄贤金.区域系统物质代谢研究——以江苏省南通市为例[J].自然资源学报,2005,20(2):212-221. [19] Ayers R U, Kneese A V. Production consumption and externalities [J]. American Economic Review,1969,59(3):282-297. [20] Leontief W. Environmental repercussions and the economic structure: An input-output approach [J]. Review of Economics and Statistics,1970,52(l):262-271. [21] Ayres R U. Industrial metabolism: Theory and policy //Ayres R U, Simonis U K. Industrial Metabolism: Restructuring for Sustainable Development. United Nations University Press, 1994:3-20. [22] Michaelis P, Jackson T. Material and energy flow through the UK iron and steel sector, Part 2: 1994-2019 [J]. Resources, Conservation and Recycling,2000,29(3):209-230. [23] Daigo I, Matsuno Y, Adachi Y. Substance flow analysis of chromium and nickel in the material flow of stainless steel in Japan [J]. Resources, Conservation and Recycling,2010,54(11):851-863. [24] Haberl H. Human appropriation of net primary production as an environmental indicator: Implications for sustainable development [J]. AMBIO,1997,26(3):143-146. [25] Haberl H. The energetic metabolism of societies [J]. Journal of Industrial Ecology,2001,5(1): 11-31. [26] Haberl H. The energetic metabolism of societies, Part II: Empirical examples [J]. Journal of Industrial Ecology,2001,5(2):71-88. [27] Krausmann F, Haberl H. The process of industrialization from the perspective of energetic metabolism: Socioeconomic energy flows in Austria 1830-1995 [J]. Ecological Economics,2002,41(2):177-201. [28] Ramos-Martin J, Giampietro M, Mayumi K. On China’s exosomatic energy metabolism: An application of multi-scale integrated analysis of societal metabolism (MSIASM) [J]. Ecological Economics,2007,63(1):174-191. [29] Huang S L, Lee C L, Chen C W. Socioeconomic metabolism in Taiwan: Emergy synthesis versus material flow analysis [J]. Resources, Conservation and Recycling,2006,48(2):166-196. [30] Zhang L X, Chen B, Yang Z F. Comparison of urban ecosystems of typical mega cities in China using emergy synthesis [J]. Communications in Nonlinear Science and Numerical Simulation,2009,14(6):2827-2836. [31] 夏传勇.经济系统物质流分析研究述评[J].自然资源学报,2005,20(3):415-421. [32] Schandl H, Grunbuhel C, Haberl H, et al. Handbook of physical accounting measuring bio-physical dimensions of socio-economic activities MFA-EFA-HANPP . Vienna: 2002. [33] Brunner P H, Rechberger H. Practical Handbook of Material Flow Analysis [M]. Boca Raton: CRC Press, 2003. [34] Eurostat. Economy-wide Material Flow Accounts and Derived Indicators—A Methodological Guide [M]. Luxembourg: Eurostat, 2001. [35] Odum H T. Environmental Accounting-Emergy and Environmental Decision Making [M]. New York: John Wiley & Sons,1996. [36] Rees W, Wackernagel M. Urban ecological footprints: Why cities cannot be sustainable—And why they are a key to sustainability [J]. Environmental Impact Assessment Review,1996,16(4/6):223-248. [37] Huang S L. Urban ecosystems, energetic hierarchies, and ecological economics of Taipei metropolis [J]. Journal of Environmental Management,1998,52(1):39-51. [38] Zhang Y, Yang Z F, Fath B D, et al. Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities [J]. Ecological Modelling,2010,221(16):1865-1879. [39] 成升魁,闵庆文,闫丽珍.从静态的断面分析到动态的过程评价——兼论资源流动的研究内容与方法[J].自然资源学报, 2005,20(3): 407-414. [40] Cheng S K, Xu Z R, Sun Y, et al. Spatial and temporal flows of China’s forest resources: Development of a framework for evaluating resource efficiency [J]. Ecological Economics, 2010, 69(7):1405-1415. [41] 沈镭,刘晓洁.资源流研究的理论与方法探析[J].资源科学,2006,28(3):9-16. [42] Krausmann F, Haberl H, Erb K H, et al. Resource flows and land use in Austria 1950-2000: Using the MEFA framework to monitor society-nature interaction for sustainability [J]. Land Use Policy, 2004, 21(3): 215-230. [43] Peter B. Green accounting and material flow: Alternatives or complements? WI papers No.106.2000. [44] Chambers N, Child R, Jenkin N, et al. Stepping forward: A resource flow and ecological footprint analysis of the southwest of England resource flow report . Best Foot Forward Ltd, United Kingdom, 2005. [45] Narayanaswamy V, Scott J B, Ness J N, et al. Resource flow and product chain analysis as practical tools to promote cleaner production initiatives [J]. Journal of Cleaner Production,2003,11(4):375-387. [46] Fath B D, Patten B C. Quantifying resource homogenization using network flow analysis [J]. Ecological Modelling,1999,123(2/3): 193-205. [47] Ukidwe N U, Bakshi B R. Thermodynamic accounting of ecosystem contribution to economic sectors with application to 1992 U.S. economy [J]. Environmental Science and Technology,2004,38(18):4810-4827. [48] Reistad G M. Available energy conversion and utilization in the United States [J]. ASME Journal of Engineering for Power,1975, 97: 429-434. [49] Ayres R U, Ayres L W, Warr B. Exergy, power and work in the US economy, 1900-1998 [J]. Energy,2003,28(3):219-273. [50] Wall G. Exergy—A useful concept within resource accounting . Institute of Theoretical Physics, 1977, Report No.77-42. [51] Wall G. Exergy conversion in the Swedish society [J]. Resources and Energy,1987,9(1):55-73. [52] Wall G. Exergy conversion in the Japanese society [J]. Energy,1990,15(5):435-444. [53] Wall G, Sciubba E, Naso V. Exergy use in the Italian society [J]. Energy,1994,19(12):1267-1274. [54] Ertesvag I S, Mielnik M. Exergy analysis of the Norwegian society [J]. Energy,2000,25(10): 957-973. [55] Chen G Q, Qi Z H. Systems account of societal exergy utilization: China 2003 [J]. Ecological Modelling,2007,208(2/4):102-118. [56] Rosen M A. Assessing energy technologies and environmental impacts with the principles of thermodynamics [J]. Applied Energy, 2002,72(1):427-441. [57] Sciubba E. Beyond thermoeconomics? The concept of extended exergy accounting and its application to the analysis and design of thermal systems [J]. Exergy, An International Journal,2001,1(2):68-84. [58] Chen B, Chen G Q. Exergy analysis for resource conversion of the Chinese society 1993 under the material product system [J]. Energy,2006,31(8/9):1115-1150. [59] Chen G Q, Ji X. Chemical exergy based evaluation of water quality [J]. Ecological Modelling,2007,200(1/2):259-268. [60] Huang L Q, Chen G Q, Zhang Y, et al. Exergy as a unified measure of water quality [J]. Communications in Nonlinear Science and Numerical Simulation,2007,12(5):663-672. [61] Chen G Q, Chen B. Extended-exergy analysis of the Chinese society [J]. Energy,2009,34(9):1127-1144 [62] Chen G Q, Chen Z M. Carbon emissions and resources use by Chinese economy 2007: A 135-sector inventory and input-output embodiment [J]. Communications in Nonlinear Science and Numerical Simulation,2010,15(11):3647-3732 [63] Balocco C, Papeschi S, Grazzini G, et al. Using exergy to analyze the sustainability of an urban area [J]. Ecological Economics, 2004, 48(2): 231-244. [64] 李栋,刘晶茹,王如松.城市生态系统代谢分析方法与评价指标研究进展[J].生态经济,2008(6):35-39. |
[1] | 郝庆, 邓玲, 封志明. 面向国土空间规划的“双评价”:抗解问题与有限理性[J]. 自然资源学报, 2021, 36(3): 541-551. |
[2] | 段存儒, 曾贤刚. 中国资源型城市转型对劳动力需求的影响[J]. 自然资源学报, 2021, 36(3): 606-617. |
[3] | 李德山, 赵颖文, 李琳瑛. 煤炭资源型城市环境效率及其环境生产率变动分析──基于山西省11个地级市面板数据[J]. 自然资源学报, 2021, 36(3): 618-633. |
[4] | 孙永胜, 佟连军. 吉林省限制开发区域资源环境承载力综合评价[J]. 自然资源学报, 2021, 36(3): 634-645. |
[5] | 邓祥征, 杨开忠, 单菁菁, 董锁成, 张文鸽, 郭荣星, 谈明洪, 赵鹏军, 李宇, 苗长虹, 崔耀平. 黄河流域城市群与产业转型发展[J]. 自然资源学报, 2021, 36(2): 273-289. |
[6] | 璩路路, 王永生, 刘彦随, 马晴. 乡村振兴导向的水土资源承载力评价及其优化[J]. 自然资源学报, 2021, 36(2): 300-314. |
[7] | 丁超, 胡永江, 王振华, 赵娜, 董文秀, 王黎明. 虚拟水社会循环视域下的水资源承载力评价[J]. 自然资源学报, 2021, 36(2): 356-371. |
[8] | 孙从建, 贾焰文, 李新功, 张永清, 孙九林. 吕梁山连片贫困区南部水资源实物量表特征[J]. 自然资源学报, 2021, 36(2): 372-383. |
[9] | 李国志, 张景然. 矿产资源开发生态补偿文献综述及实践进展[J]. 自然资源学报, 2021, 36(2): 525-540. |
[10] | 林江彪, 王亚娟, 张小红, 刘小鹏. 黄河流域城市资源环境效率时空特征及影响因素[J]. 自然资源学报, 2021, 36(1): 208-222. |
[11] | 阎晓, 涂建军. 黄河流域资源型城市生态效率时空演变及驱动因素[J]. 自然资源学报, 2021, 36(1): 223-239. |
[12] | 马涛, 王昊, 谭乃榕, 朱江, 张凡凡. 流域主体功能优化与黄河水资源再分配[J]. 自然资源学报, 2021, 36(1): 240-255. |
[13] | 葛良胜, 夏锐. 自然资源综合调查业务体系框架[J]. 自然资源学报, 2020, 35(9): 2254-2269. |
[14] | 石吉金, 王鹏飞, 李娜, 李彦华. 全民所有自然资源资产负债表编制的思路框架[J]. 自然资源学报, 2020, 35(9): 2270-2282. |
[15] | 成升魁, 沈镭, 封志明, 钟帅. 中国自然资源研究的发展历程及展望[J]. 自然资源学报, 2020, 35(8): 1757-1772. |
|