[1] Schimel J P, Bennett J. Nitrogen mineralization: Challenges of a changing paradigm[J]. Ecology, 2004, 85(3): 591-602.
[2] 吴良欢, 陶勤南. 植物有机营养研究进展[M]//冯锋, 张福锁, 杨新泉. 植物营养研究——进展与展望. 北京: 中国农业大学出版社, 2000: 58-71.
[3] Nsholm T, Persson J. Plant acquisition of organic N in boreal forests[J]. Physiology Plantarum, 2001, 111: 419-426.
[4] 莫良玉, 吴良欢, 陶勤南. 高等植物对有机氮吸收与利用研究进展[J]. 生态学报, 2002, 22(1): 118-124.
[5] Jones D L, Healey J R, Willett V B, et al. Dissolved organic nitrogen uptake by plants—An important N uptake pathway? [J] Soil Biology and Biochemistry, 2005, 37: 413-423.
[6] Nasholm T, Kielland K, Ganeteg U. Uptake of organic nitrogen by plants[J]. New Phytologist, 2009, 182: 31-48.
[7] 王文颖, 刘俊英. 植物吸收利用有机氮营养研究进展[J]. 应用生态学报, 2009, 20(5): 1223-1228.
[8] Bronson K F. Forms of inorganic nitrogen in soil[M]//Schepers J S, Raun W R. Nitrogen in Agricultural Systems. 3rd Edition. Agronomy Monograph, 2008, 49: 31-56.
[9] Schulten H-R, Schnitzer M. The chemistry of soil organic nitrogen: A review[J]. Biology and Fertility of Soils, 1998, 26: 1-15.
[10] Chen C R, Xu Z H. Analysis and behavior of soluble organic nitrogen in forest soils[J]. Journal of Soils and Sediments, 2008, 8: 363-378.
[11] Olk D C. Forms of inorganic nitrogen in soil[M]//Schepers J S, Raun W R. Nitrogen in Agricultural Systems. 3rd Edition. Agronomy Monograph, 2008, 49: 57-100.
[12] Bremner J M. Organic nitrogen in soils[M]//Batholomew W V, Clark F E. Soil Nitrogen. American Society of Agronomy, Madison, Wis., 1965: 93-149.
[13] Stevenson F J. Nitrogen in Agricultural Soils[M]. ASA, CSSA, SSSA, Madison, Wis., 1982.
[14] Warman P R, Isnor R A. Amino acid composition of peptides present in organic matter fractions of sandy loam soil[J]. Soil Science, 1991, 152: 7-13.
[15] Senwo Z N, Tabatabai M A. Amino acid composition of soil organic matter[J]. Biology and Fertility of Soils, 1998, 26: 1-15.
[16] Friedel J K, Scheller E. Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass[J]. Soil Biology and Biochemistry, 2002, 34: 315-325.
[17] Martens D A, Loeffelmann K L. Soil amino acid composition quantified by acid hydrolysis and anion chromatography-pulsed amperometry[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 6521-6529.
[18] Fischer H, Meyer A, Fischer K, et al. Carbohydrate and amino acid composition of dissolved organic matter leached from soil[J]. Soil Biology and Biochemistry, 2007, 39: 2926-2935.
[19] Werdin-Pfisterer, Kielland K, Boone R D. Soil amino acid composition across a boreal forest successional sequence[J]. Soil Biology and Biochemistry, 2009, 41: 1210-1220.
[20] Galloway J N, Schlesinger W, Levy II H, et al. Nitrogen fixation: Anthropogenic enhancement-environmental response[J]. Global Biogeochemical Cycles, 1995, 9: 235-252.
[21] Talbot J M, Treseder K K. Controls over mycorrhizal uptake of organic nitrogen[J]. Pedobiologia, 2010, 53: 169-179.
[22] Hutchinson H B, Miller N H J. The direct assimilation of inorganic and organic forms of nitrogen by higher plants[J]. Centbl Bakt II, 1911, 30: 513-547.
[23] Brigham R O. Assimilation of organic nitrogen by Zea mays and the influence of Bacillus subtilis on such assimilation[J]. Soil Science, 1917, 3: 155-195.
[24] Wright D E. Amino acid uptake by plant roots[J]. Archives of Biochemistry and Biophysics, 1962, 97: 174-180.
[25] Bright S W J, Kueh J S H, Rognes S E. Lysine transport in two barley mutants with altered uptake of basic amino acids in the root[J]. Plant Physiology, 1983, 72: 821-824.
[26] Schobert C, Komor E. Amino acids uptake by Ricinus communis roots: Characterization and physiological significance[J]. Plant, Cell and Environment, 1987, 10: 494-500.
[27] Jones D L, Darrah P R. Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere[J]. Plant and Soil, 1994, 163: 1-12.
[28] Kielland K. Amino acids absorption by arctic plants: Implications for plant nutrition and nitrogen cycling[J]. Ecology, 1994, 75: 2373-2383.
[29] Raab T K, Lipson D A, Monson R M. Non-mycorrhizal uptake of amino acids by roots of the alpine Kobresia myosuroides: Implications for the alpine N cycle[J]. Oecologia, 1996, 108: 488-494.
[30] Heremans B, Borstlap AC, Jacobs M. The rlt11 and raec1 mutants of Arabidopsis haliana lack the activity of a basic-amino-acid transporter[J]. Planta, 1997, 201: 219-226.
[31] Raab T K, Lipson D A, Monson R M. Soil amino acid utilization among species of the Cyperaceae: Plant and soil processes[J]. Ecology, 1999, 80: 2408-2419.
[32] Falkengren-Grerup U, Mnsson K F, Olsson M O. Uptake capacity of amino acids by ten grasses and forbs in relation to soil acidity and N availability[J]. Environmental and Experimental Botany, 2000, 44: 207-219.
[33] Persson J, Nsholm T. Amino acid uptake: A widespread ability among boreal forest plants[J]. Ecology Letters, 2001, 4: 434-438.
[34] Persson J, Gardestrm P, Nsholm T. Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris[J]. Journal of Experimental Botany, 2006, 57: 2651-2659.
[35] Forsum O, Svennerstam H, Ganeteg U, et al. Capacities and constraints of amino acid utilization in Arabidopsis[J]. New Phytologist, 2008, 179(4): 1058-1069.
[36] Jmtgrd S, Nsholm T, Huss-Danell K. Characteristics of amino acid uptake in barley[J]. Plant and Soil, 2008, 302: 221-231.
[37] Kahmen A, Livesley S J, Arndt S K. High potential, but low actual, glycine uptake of dominant plant species in three Australian land-use types with intermediate N availability[J]. Plant and Soil, 2009, 325: 109-121.
[38] Lipson D, Nsholm T. The unexpected versatility of plants: Organic nitrogen use and availability in terrestrial ecosystems[J]. Oecologia, 2001, 128: 305-316.
[39] Xu X L, Kuzyakov Y, Stange F, et al. Light affected the competition for inorganic and organic nitrogen between maize and soil microorganisms[J]. Plant and Soil, 2008, 304: 59-72.
[40] Nsholm T, Huss-Danell K, Hgberg P. Uptake of glycine by field grown wheat[J]. New Phytologist, 2001, 150: 59-63.
[41] Yamagata M, Ae N. Direct acquisition of organic N by crops[J]. JARQ, 1999, 33: 13-21.
[42] Nsholm T, Huss-Danell K, Hgberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species[J]. Ecology, 2000, 81: 1155-1161.
[43] Thornton B. Uptake of glycine by non-mycorrhizal Lolium perenne[J]. Journal of Experimental Botany, 2001, 52: 1-8.
[44] Stribley D P, Read D J. The biology of mycorrhiza in the Ericacea. VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic N sources[J]. New Phytologist, 1980, 86: 365-371.
[45] Alexander I J. The significance of ectomycorrhizas in the nitrogen cycle[M]//Lee J A, McNeoll S, Rorison L H. Nitrogen as Ecological Factor. Oxford: Blackwell Scientific Publications, 1983: 69-94.
[46] Read D J, Bajwa R. Some nutritional aspects of biology of ericaceous mycorrhizas[J]. Proceedings of Royal Society of Edinburg, 1985, 85B: 317-332.
[47] Read D J. Mycorrhizas in ecosystems[J]. Experientia, 1991, 47: 376-391.
[48] Turnbull M H, Goodall R, Stewart D R. The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill ex Maiden and Eucalptus maculata Hook[J]. Plant, Cell and Environment, 1995, 18: 1386-1394.
[49] Lipson D A, Raab T K, Schmidt S K, et al. Variation in competitive abilities of plants and microbes for specific amino acids[J]. Oecologia, 1999, 29: 257-261.
[50] Hawkins H-J, Johansen A, George E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi[J]. Plant and Soil, 2000, 226: 275-285.
[51] Melin E, Nisson H. Transfer of labeled nitrogen from glutamin acid to pine seedlings through the mycelium of Boletus variegatus (Sw.)[J]. Nature, 1953, 171: 134.
[52] Went F W, Stark N. Mycorrhiza[J]. BioScience, 1968, 18: 1035-1039.
[53] Chapin III F S, Moilainen L, Kielland K. Preferential use of organic acid N by a non-mycorrhizal arctic sedge[J]. Nature, 1993, 361: 150-153.
[54] Bush D R. Proton-coupled sugar and amino acid transporters in plants[J]. Annual Review of Plant Physiology and Molecular Biology, 1993, 44: 513-542.
[55] Tanner W, Caspari T. Membrane transport carriers[J]. Annual Review of Plant Physiology and Molecular Biology, 1996, 47: 595-626.
[56] Fischer W-F, André B, Rentsch D, et al. Amino acid transport in plant[J]. Trends in Plant Science, 1998, 3: 188-195.
[57] Kinraide T B. Interamino acid inhibition of transport in higher plants. Evidence for two transport channels with ascertainable affinities for amino acids[J]. Plant Physiology, 1981, 68: 1327-1333.
[58] Datko A H, Mudd S H. Uptake of amino acids and other organic compounds by Lemna paucicostata Hegelm[J]. Plant Physiology, 1985, 77: 770-778.
[59] Fischer W-F, Kwart M, Hummel S, et al. Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis[J]. Joural of Biological Chemistry, 1995, 270: 16315-16320.
[60] Rentsch D, Hirner B, Schmeltzer E, et al. Salt stress-induced praline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant[J]. Plant Cell, 1996, 8: 1437-1446.
[61] Chen L, Bush D R. LHT1, a lysine- and histidine-specific amino acid transporter in Arabidopsis[J]. Plant Physiology, 1997, 115: 1127-1134.
[62] Bick J A, Neelam A, Hall J L, et al. Amino acid carriers of Ricinus communis expressed during seedling development: molecular cloning and expression analysis of two putative amino acid transporters, RcAAP1 and RcAAP2[J]. Plant Molecular Biology, 1998, 36: 377-385.
[63] Rentsch D, Schmidt S, Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants[J]. FEBS Letters, 2007, 581: 2281-2289.
[64] Hirner A, Ladwig F, Stransky H, et al. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll[J]. Plant Cell, 2006, 18: 1931-1946.
[65] Svennerstam H, Ganeteg U, Bellini C, et al. Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids[J]. Plant Physiology, 2007, 143(4): 1853-1860.
[66] Liu X, Bush D. Expression and transcriptional regulation of amino acid transporters in plants[J]. Amino Acids, 2006, 30: 113-120.
[67] Grov A. Amino acids in soils[J]. Acta Chemica Scandinavica, 1963, 17: 2316-2318.
[68] Ivarson K C, Sowden F J. Free amino acid composition of the plant root environment under field conditions[J]. Canadian Journal of Soil Society, 1969, 49: 121-127.
[69] Ktsoyev B K. Free amino acids in the soils of the northern Caucasus[J]. Soviet Soil Science, 1978, 9: 312-315.
[70] Nsholm T, Ekblad A, Nordin A, et al. Boreal forest plants take up organic nitrogen[J]. Nature, 1998, 392: 914-916.
[71] Finzi A C, Berthrong S T. The uptake of amino acids by microbes and trees in three cold-temperature forests[J]. Ecology, 2005, 86: 3345-3353.
[72] LeDuc S D, Rothstein D E. Plant-available organic and mineral nitrogen shift in dominance with forest stand age[J]. Ecology, 2010, 91(3): 708-720.
[73] Abuzinadha R A, Read D J. Amino acids as nitrogen sources for ecomycorrhizal fungi: Utilization of individual amino acids[J]. Transactions of British Mycological Society, 1988, 91: 473-479.
[74] Kielland K. Landscape patterns of free amino acids in arctic tundra soils[J]. Biogeochemistry, 1995, 31: 85-98.
[75] Schimel J P, Chapin F S. Tundra plant uptake of amino acid and NH4+-N in situ: Plants compete well for amino acid N[J]. Ecology, 1996, 77: 2142-2147.
[76] Nordin A, Schmidt I K, Shaver G R. Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply[J]. Ecology, 2004, 85(4): 955-962.
[77] Lipson D A, Raab T K, Schmidt S K, et al. An empirical model of amino acid transformations in an alpine soil[J]. Soil Biology and Biochemistry, 2001, 33: 189-198.
[78] Miller A E, Bowman W D. Alpine plants show species-level differences in the uptake of organic and inorganic nitrogen[J]. Plant and Soil, 2003, 250: 283-292.
[79] Xu X L, Ouyang H, Cao G M, et al. Uptake of organic nitrogen by eight dominant plant species in Kobresia meadows[J]. Nutrient Cycling in Agroecosystems, 2004, 69: 5-10.
[80] Miller A E, Bowman W D, Suding K N. Plant uptake of inorganic and organic nitrogen: Neighbor identity matters[J]. Ecology, 2007, 88: 1832-1840.
[81] Harrison K A, Bol R, Bardgett R D. Preferences for different nitrogen forms by coexisting plant species and soil microbes[J]. Ecology, 2007, 88(4): 989-999.
[82] Bardgett R D, Steeter TC, Bol R. Soil microorganisms compete effectively with plants for organic-nitrogen inputs to temperate grasslands[J]. Ecology, 2003, 84: 1277-1387.
[83] Xu X L, Ouyang H, Kuzyakov Y, et al. Significance of organic nitrogen acquisition for dominant species in an alpine meadow on the Tibet Plateau, China[J]. Plant and Soil, 2006, 285: 221-231.
[84] Brophy L S, Heichel G H. Nitrogen release from roots of alfalfa and soybean grown in sand culture[J]. Plant and Soil, 1989, 116: 77-84.
[85] Ta T C, MacDowall D H, Faris M A. Excretion of nitrogen assimilated from N2 fixed by nodulated roots of alfalfa (Medicago sativa)[J]. Canadian Journal of Botany, 1986, 64: 2063-2067.
[86] Shepherd T, Davies H V. Pattern of short-term amino acid accumulation and loss in the root zone of liquid-cultured forage rape[J]. Plant and Soil, 1994, 158: 99-109.
[87] Jones D L, Darrah P R. Influx and efflux of amino acids from Zea mays L. roots and their implications for N nutrition and the rhizosphere[J]. Plant and Soil, 1993, 155-156: 87-90.
[88] Klein D A, Frederik B A, Biondini M, et al. Rhizosphere micro-organism effects on soluble amino acids, sugars and organic acids in the root of zone of Agropyron cristatum, A. smithii and Bouteloua gracilis[J]. Plant and Soil, 1988, 110: 19-25.
[89] Paynel F, Murray P J, Cliquet J B. Root exudates: A pathway for short-term N transfer from clover and ryegrass[J]. Plant and Soil, 2001, 229: 235-243.
[90] Phillips D A, Fox T C, King M D, et al. Microbial products trigger amino acid exudation from plant roots[J]. Plant Physiology, 2004, 136: 2887-2894.
[91] Phillips D A, Fox T C, Six J. Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2[J]. Global Change Biology, 2006, 12: 561-567.
[92] Jones D L. Amino acid degradation and its potential effects on organic nitrogen capture by plants[J]. Soil Biology and Biochemistry, 1999, 31: 613-622.
[93] Jones D L, Kielland K. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils[J]. Soil Biology and Biochemistry, 2002, 34: 209-219.
[94] Kuzyakov Y, Jones D L. Glucose uptake by maize roots and its transformation in the rhizosphere[J]. Soil Biology and Biochemistry, 2006, 38: 851-860.
[95] Biernath C, Fischer H, Kuzyakov Y. Root uptake of N-containing and N-free low molecular weight organic substances by maize-a14C/15N tracer study[J]. Soil Biology and Biochemistry, 2008, 9(40): 2237-2245.
[96] Rasmussen J, Sauheitl L, Eriksen J, et al. Plant organic N uptake is biased by inorganic C: Results of triple labeling study[J]. Soil Biology and Biochemistry, 2010, 42: 524-527.
[97] 邓若磊, 徐海荣, 曹云飞, 等. 植物吸收铵态氮的分子生物学基础[J]. 植物营养与肥料学报, 2007, 13(3): 512-519.
[98] McKane R B, Johnson L C, Shaver G R, et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra[J]. Nature, 2002, 415: 68-71. |