自然资源学报 ›› 2011, Vol. 26 ›› Issue (4): 619-634.doi: 10.11849/zrzyxb.2011.04.008
何学兆1,2,3, 周 涛1,2, 贾根锁4, 张自银1,2, 李秀娟1,2, 赵 超1,2, 冯胜辉1,2
收稿日期:
2010-08-10
修回日期:
2010-12-10
出版日期:
2011-04-29
发布日期:
2011-04-29
作者简介:
何学兆(1978- ),男,江苏连云港人,博士研究生,研究方向为气候变化与碳循环模拟。E-mail:hexuezhao@gmail.com
基金资助:
国家自然科学基金(30590384,30970514,40671173);中国科学院东亚区域气候-环境重点实验室开放课题。
HE Xue-zhao1,2,3, ZHOU Tao1,2, JIA Gen-suo4, ZHANG Zi-yin1,2, LI Xiu-juan1,2, ZHAO Chao1,2, FENG Sheng-hui1,2
Received:
2010-08-10
Revised:
2010-12-10
Online:
2011-04-29
Published:
2011-04-29
摘要: 研究利用基于冠层辐射传输与植物生理过程的MAESTRA模型,结合中国东部鼎湖山、千烟洲及长白山3个典型森林生态系统的CO2通量观测数据,对光合有效辐射(Photosynthetically Active Radiation, PAR)总量及其散射辐射比例变化影响下生态系统总初级生产力(Gross Primary Productivity,GPP)的变化进行了模拟与敏感性分析,从而探讨这两者的变化对森林生态系统GPP的综合影响。研究结果表明:PAR总量变化对GPP的影响程度由PAR总量变化幅度以及GPP对PAR总量变化的敏感程度所决定,较低的PAR总量与较高的温度条件下GPP对PAR总量变化较敏感;散射辐射比例增大可以提高森林冠层对入射PAR的吸收和利用效率,其对GPP的影响程度由散射辐射量的变化以及散射辐射与直射辐射在吸收与利用效率上的差别所决定,较高温度与叶面积条件下该差别较大;PAR总量与散射辐射比例共同变化对GPP的综合影响取决于上述两个过程的抵消结果,入射PAR较强时两者抵消作用通常更明显,在全年总量上,散射辐射比例变化对GPP的影响能抵消PAR总量变化影响的1/3~1/2。
中图分类号:
S718.5
何学兆, 周 涛, 贾根锁, 张自银, 李秀娟, 赵 超, 冯胜辉. 光合有效辐射总量及其散射辐射比例变化对 森林GPP影响的模拟[J]. 自然资源学报, 2011, 26(4): 619-634.
HE Xue-zhao, ZHOU Tao, JIA Gen-suo, ZHANG Zi-yin, LI Xiu-juan, ZHAO Chao, FENG Sheng-hui. Modeled Effects of Changes in the Amount and Diffuse Fraction of PAR on Forest GPP[J]. JOURNAL OF NATURAL RESOURCES, 2011, 26(4): 619-634.
[1] IPCC. Climate Change 2007: The Physical Science Basis-The Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. New York: Cambridge Univ. Press, 2007. [2] Houghton R A. Balancing the global carbon budget [J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 313-347. [3] Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems [J]. Nature, 2001, 414: 169-172. [4] 周涛, 仪垂祥, Bakwin P S, 等. 大气CO2浓度变化与生物群系气候异常之间的关联分析[J]. 中国科学D辑, 2008, 38(2): 224-231. [5] Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China [J]. Nature, 2009, 458: 1009-1014. [6] Chapin F S. Principles of Terrestrial Ecosystem Ecology [M]. New York: Springer, 2002. [7] Zhou T, Luo Y. Spatial patterns of ecosystem carbon residence time and NPP-driven carbon uptake in the conterminous United States [J]. Global Biogeochemical Cycles, 2008, 22, doi: 10.1029/2007GB002939. [8] Mercado L M, Bellouin N, Sitch S, et al. Impact of changes in diffuse radiation on the global land carbon sink [J]. Nature, 2009, 458: 1014-1018. [9] Gilgen H, Wild M, Ohmura A. Means and trends of shortwave irradiance at the surface estimated from Global Energy Balance Archive data [J]. Journal of Climate, 1998, 11: 2042-2061. [10] Liepert B G. Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990 [J]. Geophysical Research Letters, 2002, 29, doi: 10.1029/2002GL014910. [11] Stanhill G, Cohan S. Global dimming a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences [J]. Agricultural and Forest Meteorology, 2001, 107: 255-278. [12] Pinker R T, Zhang B, Dutton E G. Do satellites detect trends in surface solar radiation? [J] Science, 2005, 308: 850-854. [13] Mishchenko M I, Geogdzhayev I V, Rossow W B, et al. Long term satellite record reveals likely recent aerosol trend [J]. Science, 2007, 315: 1543. [14] Wild M, Gilgen H, Roesch A, et al. From dimming to brightening: decadal changes in solar radiation at earth’s surface. Science, 2005, 308: 847-850. [15] Wild M, Trüssel B, Ohmura A, et al. Global dimming and brightening: An update beyond 2000 [J]. Journal of Geophysical Research, 2009, 114, doi: 10.1029/2008JD011382. [16] Roderick M L, Farquhar G D, Berry S, et al. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation [J]. Oecologia, 2001, 129: 21-30. [17] Yamasoe M A, von Randow C, Manzi A O, et al. Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy [J]. Atmospheric Chemistry and Physics, 2006, 6: 1645-1656. [18] Gu L H, Baldocchi D D, Wofsy S, et al. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis [J]. Science, 2003, 299: 2035-2038. [19] Niyogi D, Chang H, Saxena V K, et al. Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes [J]. Geophysical Research Letters, 2004, 31, doi: 10.1029/2004GL020915. [20] Oliveira P H F, Artaxo P, Pires C, et al. The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia [J]. Tellus B, 2007, 59, doi: 10.1111/j.1600-0889.2007.00270. [21] Farquhar G D, Roderick M L. Pinatubo, diffuse Light, and the carbon cycle [J]. Science, 2003, 299: 1997-1998. [22] Cohan D S, Xu J, Greenwald R, et al. Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity [J]. Global Biogeochemical Cycles, 2002, 16, doi: 10.1029/2001GB001441. [23] Jones C D, Cox P M. Modeling the volcanic signal in the atmospheric CO2 record [J]. Global Biogeochemical Cycles, 2001, 12: 453-465. [24] Krakauer N Y, Randerson J T. Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings [J]. Global Biogeochemical Cycles, 2003, 17, doi: 10.1029/2003GB002076. [25] Alton P B. Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies [J]. Agricultural and Forest Meteorology, 2008, 148: 1641-1653. [26] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学D辑, 2007, 37(6): 804-812. [27] 邵振艳, 周涛, 史培军, 等. 大气污染对中国重点城市地面总辐射影响的时空特征[J]. 高原气象, 2009, 28(5): 1105-1114. [28] 王春林, 于贵瑞, 周国逸, 等. 鼎湖山常绿针阔叶混交林CO2通量估算[J]. 中国科学D辑: 地球科学, 2006, 36(增刊Ⅰ): 119-129. [29] 王春林, 周国逸, 唐旭利, 等. 鼎湖山针阔叶混交林生态系统呼吸及其影响因子[J]. 生态学报, 2007, 27(7): 2659-2668. [30] Yu G, Zhang L, Sun X, et al. Environmental controls over carbon exchange of three forest ecosystems in eastern China [J]. Global Change Biology, 2008, 14, doi: 10.1111/j.1365-2486.2008.01663.x. [31] 刘允芬, 于贵瑞, 温学发, 等. 千烟洲中亚热带人工林生态系统CO2通量的季节变异特征[J]. 中国科学D辑: 地球科学, 2006, 36(增刊Ⅰ): 91-102. [32] 于贵瑞, 温学发, 李庆康, 等. 中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征[J]. 中国科学D辑: 地球科学, 2004, 34(增刊Ⅱ): 85-95. [33] 王秋凤, 牛栋, 于贵瑞, 等. 长白山森林生态系统CO2和水热通量的模拟研究[J]. 中国科学D辑: 地球科学, 2004, 34(增刊Ⅱ): 131-140. [34] Medlyn B E. A MAESTRO retrospective [M]//Mencuccini M, Moncrieff J, McNaughton K, et al. Forests at the Land-Atmosphere Interface. CABI Publishing, 2004: 105-121. [35] Wang Y P, Jarvis P G. Description and validation of an array model—MAESTRO [J]. Agricultural and Forest Meteorology, 1990, 51: 257-280. [36] McMurtrie R E, Wang Y P. Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures [J]. Plant Cell Environment, 1993, 16: 1-13. [37] Wang Y P, Rey A, Jarvis P G. Carbon balance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations [J]. Global Change Biology, 1998, 4: 797-807. [38] Luo Y Q, Medlyn B E, Hui D F, et al. Gross primary productivity in Duke Forest: Modeling synthesis of CO2 experiment and eddy-flux data [J]. Ecological Applications, 2001, 11(1): 239-252. [39] Spitters C J T, Toussaint H A J M, Goudriaan J. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis [J]. Agricultural and Forest Meteorology, 1986, 38: 217-229. [40] 查良松. 我国地面太阳辐射量的时空变化研究[J]. 地理科学, 1996, 16: 232-237. [41] Che H Z, Shi G Y, Zhang X Y, et al. Analysis of 40 years of solar radiation data from China [J]. Geophysical Research Letters, 2005, 32, doi: 1029/2004GL022322. [42] 李晓文, 李维亮, 周秀骥. 中国近30年太阳辐射状况研究[J]. 应用气象学报, 1998, 9: 24-31. [43] Liang F, Xia X A. Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000 [J]. Annales Geophysicae, 2005, 23: 2425-2432. [44] Qian Y, Kaiser D P, Leung L R, et al. More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000 [J]. Geophysical Research Letters, 2006, 33, doi: 10.1029/2005GL024586. |
[1] | 邵思雅, 张晶, 周丽花, 乔岩. 气溶胶直接辐射效应对全球陆地生态系统碳循环的影响[J]. 自然资源学报, 2018, 33(1): 27-36. |
[2] | 赵海凤, 徐明. 四川省森林生态系统对野生珍稀濒危动物的保护价值计量研究[J]. 自然资源学报, 2016, 31(5): 789-799. |
[3] | 缪建群, 杨文亭, 杨滨娟, 马艳芹, 黄国勤. 崇义客家梯田区生态系统服务功能及价值评估[J]. 自然资源学报, 2016, 31(11): 1817-1831. |
[4] | 路倩倩, 何洪林, 朱先进, 于贵瑞, 王辉民, 张军辉, 闫俊华. 中国东部典型森林生态系统蒸散及其组分变异规律研究[J]. 自然资源学报, 2015, 30(9): 1436-1448. |
[5] | 王自奎, 吴普特, 赵西宁, 李正中, 付小军. 作物间套作群体光能截获和利用机理研究进展[J]. 自然资源学报, 2015, 30(6): 1057-1066. |
[6] | 陈耀亮, 罗格平, 叶辉, 王渊刚, 黄小涛, 张琪, 蔡鹏. 1975—2005 年中亚土地利用/覆被变化对森林生态系统碳储量的影响[J]. 自然资源学报, 2015, 30(3): 397-408. |
[7] | 石浩, 王绍强, 黄昆, 周蕾, 王辉民, 韩士杰, 周国逸, Takeshi Ohta, Nobuko Saigusa, Ichiro Tamagawa, Takashi Hirano. PnET-CN模型对东亚森林生态系统碳通量模拟的适用性和不确定性分析[J]. 自然资源学报, 2014, 29(9): 1453-1464. |
[8] | 姚小英, 李晓薇, 王禹锡, 王宁珍. 西北干旱区旱地玉米叶面积指数与气象因子及生物量的关系[J]. 自然资源学报, 2012, 27(11): 1881-1889. |
[9] | 李芬, 李文华, 甄霖, 黄河清, 魏云洁, 杨莉. 森林生态系统补偿标准的方法探讨——以海南省为例[J]. 自然资源学报, 2010, 25(5): 735-745. |
[10] | 陈晨, 梁银丽, 吴瑞俊, 彭强, 贾文燕, 黄茂林. 黄土丘陵沟壑区坡地土壤有机碳变化及碳循环初步研究[J]. 自然资源学报, 2010, 25(4): 668-676. |
[11] | 耿元波, 罗光强, 李明峰. 锡林河流域典型草原碳素生物小循环研究[J]. 自然资源学报, 2010, 25(10): 1709-1717. |
[12] | 程迁, 莫兴国, 王永芬, 林忠辉. 羊草草原碳循环过程的模拟与验证[J]. 自然资源学报, 2010, 25(1): 60-70. |
[13] | 李秀娟, 周涛, 何学兆. NPP增长驱动下的中国森林生态系统碳汇[J]. 自然资源学报, 2009, 24(3): 491-497. |
[14] | 赵荣钦, 黄贤金, 徐慧, 高珊. 城市系统碳循环与碳管理研究进展[J]. 自然资源学报, 2009, 24(10): 1847-1859. |
[15] | 陈正华, 麻清源, 王建, 祁元, 李净, 黄春林, 马明国, 杨国靖. 利用CASA模型估算黑河流域净第一性生产力[J]. 自然资源学报, 2008, 23(2): 263-273. |
|