自然资源学报 ›› 2011, Vol. 26 ›› Issue (3): 450-459.doi: 10.11849/zrzyxb.2011.03.011
赵彬, 孙龙, 胡海清, 孙志虎
收稿日期:
2010-07-12
修回日期:
2010-11-05
出版日期:
2011-03-20
发布日期:
2011-03-20
作者简介:
赵彬(1983- ),女,黑龙江海林市人,硕士研究生,主要从事土壤微生物研究。E-mail: binbin19831984@163.com
基金资助:
科技部973项目(2011CB403203);国家自然科学基金(31070544);东北林业大学研究生论文资助项目(gram09);中央高校基本科研业务费专项资金项目(DL09EA03-1);国家林业科技支撑计划(2008BAD95B10);黑龙江省博士后资助经费(LBH-Z0725)。
ZHAO Bin, SUN Long, HU Hai-qing, SUN Zhi-hu
Received:
2010-07-12
Revised:
2010-11-05
Online:
2011-03-20
Published:
2011-03-20
摘要: 以大兴安岭兴安落叶松林火后不同强度(重度、中度、轻度)及未火烧区的土壤为研究对象,于火烧结束3年后(2009年)的秋季,采用氯仿熏蒸浸提法测定了不同强度火烧后土壤的微生物生物量碳(Cmic)和微生物生物量氮(Nmic),并研究其与土壤养分因子的关系。结果表明:兴安落叶松林重度火烧区的Cmic显著高于中度、轻度和未火烧区,Nmic在不同强度火烧样地间差异不显著,但在重度火烧区出现最高值。其中重度、中度、轻度和对照的Cmic平均为692.8、499.9、428.8和498.7 mg·kg-1,而Nmic分别为70.6、55.2、50.9和54.1 mg·kg-1。土壤含水量、土壤pH值、土壤有机碳对Cmic和Nmic的影响显著,土壤微生物生物量与土壤含水量、pH值、土壤有机碳均呈正相关。研究将为进一步开展火干扰对北方森林土壤碳平衡影响机理研究提供科学依据。
中图分类号:
S153.6
赵彬, 孙龙, 胡海清, 孙志虎. 兴安落叶松林火后对土壤养分和土壤微生物生物量的影响[J]. 自然资源学报, 2011, 26(3): 450-459.
ZHAO Bin, SUN Long, HU Hai-qing, SUN Zhi-hu. Post-fire Soil Microbial Biomass and Nutrient Content of Larix gmelinii Forest in Autumn[J]. JOURNAL OF NATURAL RESOURCES, 2011, 26(3): 450-459.
[1] 李杨, 黄国宏, 史奕. 大气CO2浓度升高对农田土壤微生物及其相关因素的影响[J]. 应用生态学报, 2003, 14(12): 2321- 2325. [2] Williams M A, Rice C W, Owensby C E. Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years [J]. Plant and Soil, 2000, 227: 127-137. [3] Hossain A, Raison R J, Khanna P K. Effects of fertilizer application and fire regime on soil microbial biomass carbon and nitrogen, and nitrogen mineralization in an Australian subalpine eucalypt forest [J]. Biology and Fertility of Soils, 1995, 19: 246-252. [4] Knapp A K, Conard S K, Blair J M. Determinants of soil CO2 flux from a sub-humid grassland: Effects of fire and fire history [J]. Ecological Applications, 1998, 8: 760-770. [5] Wan S, Hui D, Luo Y. Fire effects on nitrogen pool and dynamics in terrestrial ecosystems: A meta-analysis [J]. Ecological Applications, 2001, 11(5): 1349-1365. [6] 罗菊春. 大兴安岭森林火灾对森林生态系统的影响[J]. 北京林业大学学报, 2002, 24(5/6): 101-107. [7] Bastias B A, Xu Z, Cairney J W G. Influence of long-term repeated prescribed burning on mycelial communities of ectomycorrhizal fungi [J]. New Phytologist, 2006, 172: 149-158. [8] Prober S M, Thiele K R, Lunt I D. Fire frequency regulates tussock grass composition, structure and resilience in endangered temperate woodlands [J]. Austral Ecology, 2007, 32: 808-824. [9] Neary D G, Klopatek C C, Debano L F, et al. Fire effects on belowground sustainability: A review and synthesis [J]. Forest Ecology and Management, 1999, 122: 51-71. [10] Hart S C, Deluca T H, Newman G S, et al. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils [J]. Forest Ecology and Management, 2005, 220: 166-184. [11] Prieto-Fernandez A, Acea M J, Carballas T. Soil microbial and extractable C and N after wildfire [J]. Biology and Fertility of Soils, 1998, 27: 132-142. [12] Banning N C, Murphy D V. Effect of heat-induced disturbance on microbial biomass and activity in forest soil and the relationship between disturbance effects and microbial community structure [J]. Applied Soil Ecology, 2008, 40: 109-119. [13] Campbell C D, Cameron C M, Bastias B A, et al. Long term repeated burning in a wet sclerophyll forest reduces fungal and bacterial biomass and responses to carbon substrates [J]. Soil Biology & Biochemistry, 2008, 40: 2246-2252. [14] Harden J W, Trumbore S E, Stocks B J, et al. The role of fire in the boreal carbon budget [J]. Global Change Biol., 2000, 6(Supp 1): 174-184. [15] French N H F, Goovaerts P, Kasischke E S. Uncertainty in estimating carbon emissions from boreal forest fires [J]. Journal of Geophysical Research, 2004, 109(D14S08): 1-12. [16] Michelsen A, Andersson M, Jensen M, et al. Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems [J]. Soil Biology & Biochemistry, 2004, 36: 1707-1717. [17] 林启美, 吴玉光, 等. 熏蒸法测定土壤微生物量碳的改进[J]. 生态学杂志, 1999, 18(2): 63- 66. [18] Wu J, Joergensen R, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure [J]. Soil Biology & Biochemistry, 1990, 22: 1167-1169. [19] Joergensen R, Brookes P C. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 mol K2SO4 soil extracts [J]. Soil Biology & Biochemistry, 1990, 22: 1023-1027. [20] Robichaud P R. Fire effects on infiltration rates after prescribed fire in northern Rocky Mountain forests, USA [J]. Journal of Hydrology, 2000(231/232): 220-229. [21] DeBano L F. The role of fire and soil heating on water repellency in wildland environments: A review [J]. Journal of Hydrology, 2000(231/232): 195-206. [22] Ice G G, Neary D G, Adams P W. Effects of wildfire on soils and watershed processes [J]. Journal of Forestry, 2004, 102(6): 16-20. [23] Hamman S T, Burke I C, Stromberger M E. Relationships between microbial community structure and soil environmental conditions in a recently burned system [J]. Soil Biology & Biochemistry, 2007, 39(7): 1703-1711. [24] Almendros G, Martin F, Gonzalez-Vila F J. Effect of fire on humic and lipid fractions in a Dystric Xerochrept in Spain[J]. Geoderma, 1988, 42(2): 115-127. [25] Andriesse J P, Koopmans T T. A monitoring study on nutrient cycles in soils used for shifting cultivation under various climate conditions in tropical Asia I: The influence of simulated burning on form and availability of plant nutrients [J]. Agriculture, Ecosystems & Environment, 1984, 12(1): 1-16. [26] 沙丽清, 邓继武, 谢克金, 等. 西双版纳次生林火烧前后土壤养分变化的研究[J]. 植物生态学报, 1998, 22(6): 513-517. [27] 戴伟. 人工油松林火烧前后土壤化学性质变化的研究[J]. 北京林业大学学报, 1994, 16(1): 102-105. [28] Dyrness C T, Van Cleeve K, Levison J D. The effect of wildfire on soil chemistry in four forest types in interior Alaska [J]. Canadian Journal of Forest Research, 1989, 19(11): 1389-1396. [29] Covington W W, Sackett S S. Soil mineral nitrogen changes following prescribed burning in ponderosa pine [J]. Forest Ecology and Management, 1992, 54: 175-191. [30] Kovacic D A, Swift D M, Ellis J E, et al. Immediate effects of prescribed burning on mineral soil nitrogen in ponderosa pine of New Mexico [J]. Soil Science, 1986, 141: 71-75. [31] Schoch P, Binkley D. Prescribed burning increased nitrogen availability in a mature loblolly pine stand [J]. Forest Ecology and Management, 1986, 14: 13-22. [32] Bell R L, Binkley D. Soil nitrogen mineralization and immobilization in response to periodic prescribed fire in a loblolly pine plantation [J]. Canadian Journal of Forest Research, 1989, 19: 816-820. [33] Raison R J, Khanna P K, Woods P V. Mechanisms of element transfer to the atmosphere during vegetation fires [J]. Canadian Journal of Forest Research, 1985, 15: 132-140. [34] Knoepp J D, Swank W T. Comparison of available soil nitrogen assays in control and burned forest sites [J]. Soil Science Society of America Journal, 1995, 59: 1750-1754. [35] Moghaddas E E Y, Stephens S L. Thinning, burning, and thin-burn fuel treatment effects on soil properties in a Sierra Nevada mixed conifer forests [J]. Forest Ecology and Management, 2007, 250: 156-166. [36] Kutiel P, Naveh Z. The effect of fire on nutrients in a pine forest soil [J]. Plant and Soil, 1987, 104: 269-274. [37] Dumontet S, Dinel H, Scopa A, et al. Post-fire soil microbial biomass and nutrient content of a pine forest soil from a dunal Mediterranean environment [J]. Soil Biology & Biochemistry, 1996, 28(10/11): 1467-1475. [38] Clarholm M. Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizer [J]. Biology and Fertility of Soils, 1993, 8: 128-133. [39] Giai C, Boerner R E J. Effects of ecological restoration on microbial activity, microbial functional diversity, and soil organic matter in mixed-oak forests of southern Ohio, USA [J]. Applied Soil Ecology, 2007, 35: 281-290. [40] Hamman S T, Burke I C, Knapp E E. Soil nutrients and microbial activity after early and late season prescribed burns in a Sierra Nevada mixed conifer forest [J]. Forest Ecology and Management, 2008, 256: 367-374. [41] Andersson M, Michelsen A, Jensen M, et al. Tropical savannah woodland: effects of experimental fire on soil microorganisms and soil emissions of carbon dioxide [J]. Soil Biology & Biochemistry, 2004(36): 849-858. [42] Ilstedt U, Giesler R, Nordgren A, et al. Change in soil chemical and microbial properties after a wildfire in a tropical rainforest in Sabah, Malaysia [J]. Soil Biology & Biochemistry, 2003, 35: 1071-1078. [43] Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities [J]. Proceedings of the National Academy of Sciences, 2006, 103: 626-631. [44] Bailey V L, Smith J L, Bolton H. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration [J]. Soil Biology & Biochemistry, 2002, 34: 997-1007. [45] Adams M A, Polglase P J, Attiwill P M, et al. In situ studies of nitrogen mineralization and uptake in forest soils: Some comments on methodology [J]. Soil Biology & Biochemistry, 1989, 21: 423-429. [46] Hook P B, Burke I C. Evaluation of methods for estimating net nitrogen mineralization in a semiarid grassland [J]. Soil Science Society of America Journal, 1995, 59: 831-837. [47] Heisler J L, Briggs J M, Knapp A K, et al. Direct and indirect effects of fire on shrub density and aboveground productivity in a mesic grassland [J]. Ecology, 2004, 85: 2245-2257. [48] Xu W, Wan S. Water-and plant-mediated responses of soil respiration to topography, fire, and nitrogen fertilization in a semi-arid grassland in northern China [J]. Soil Biology & Biochemistry, 2008, 40: 679-687. [49] Arnold S S, Fernandez I J, Rustad L E, et al. Microbial response of an acid forest soil to experimental soil warming [J]. Biology and Fertility of Soils, 1999, 30: 239-244. [50] Chen T H, Chiu C Y, Tian G L. Seasonal dynamics of soil microbial biomass in coastal sand dune forest [J]. Pedobiologia, 2005, 49: 645-653. [51] Schimel J P, Gulledge J M, Clein-Curley J S, et al. Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga [J]. Soil Biology & Biochemistry, 1999, 31: 831-838. [52] Zak D R, Pregitzer K R, Curtis P S, et al. Elevated CO2 and feedback between carbon and nitrogen cycles [J]. Plant and Soil, 1993, 151: 105-107. [53] Zak D R, Tilman D, Parmenter R R, et al. Plant-production and soil-microorganism in late-successional ecosystems—A continental-scale study [J]. Ecology, 1994, 75: 2333-2347. [54] Norby R J, Luo Y. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world [J]. New Phytologist, 2004, 162: 281-293. |
[1] | 杨静涵, 刘梦云, 张杰, 张萌萌, 曹润珊, 曹馨悦. 黄土高原沟壑区小流域土壤养分空间变异特征及其影响因素[J]. 自然资源学报, 2020, 35(3): 743-754. |
[2] | 陆荣杰, 王莺, 吴家森, 姜培坤. 不同经营方式毛竹林氮流失年动态规律[J]. 自然资源学报, 2019, 34(6): 1296-1305. |
[3] | 陶雯, 张旭博, 孙志刚, 李仕冀, 刘晓洁, 张崇玉, 欧阳竹, 成升魁. 华北引黄灌区粮食产量与农业土壤资源质量时空分布特征[J]. 自然资源学报, 2019, 34(4): 829-838. |
[4] | 厉彦玲, 赵庚星. 黄河三角洲典型地区耕地土壤养分空间预测[J]. 自然资源学报, 2018, 33(3): 489-503. |
[5] | 杨萌, 岳天, 李永夫, 李永春, 何洁, 肖永恒, 姜培坤, 周国模. 常绿阔叶林改造为板栗林对土壤氮磷钾库及酶活性的影响[J]. 自然资源学报, 2017, 32(5): 765-777. |
[6] | 彭海英, 童绍玉, 李小雁. 内蒙古典型草原土壤及其水文过程对灌丛化的响应[J]. 自然资源学报, 2017, 32(4): 642-653. |
[7] | 郭二辉, 云菲, 冯志培, 常海荣, 杨喜田. 河岸带不同植被格局对表层土壤养分分布和迁移特征的影响[J]. 自然资源学报, 2016, 31(7): 1164-1172. |
[8] | 吴昊. 秦岭山地松栎混交林土壤养分空间变异及其与地形因子的关系[J]. 自然资源学报, 2015, 30(5): 858-869. |
[9] | 赵倩倩, 赵庚星, 姜怀龙, 李敏, 唐建. 县域土壤养分空间变异特征及合理采样数研究[J]. 自然资源学报, 2012, 27(8): 1382-1391. |
[10] | 徐丽丽, 王秋兵, 张心昱, 邹敬东, 戴晓琴, 王辉民, 孙晓敏, 董雯怡. 不同施肥处理对红壤丘陵区水稻土养分状况的影响[J]. 自然资源学报, 2012, 27(11): 1890-1898. |
[11] | 张生楹, 张德罡, 陈建纲, 徐长林, 柳小妮, 张虎. 芨芨草草丛肥岛特征[J]. 自然资源学报, 2012, 27(11): 1899-1907. |
[12] | 李敏, 赵庚星, 蔡明庆, 赵倩倩, 唐建. 县域棉花信息遥感提取与棉田精确化管理分区研究[J]. 自然资源学报, 2012, 27(11): 1971-1980. |
[13] | 谷会岩, 金靖博, 陈祥伟, 王恩姮, 周一杨, 柴亚凡. 不同火烧强度林火对大兴安岭北坡兴安落叶松林土壤化学性质的长期影响[J]. 自然资源学报, 2010, 25(7): 1114-1121. |
[14] | 高茂盛, 温晓霞, 黄灵丹, 廖允成, 刘根全. 耕作和秸秆覆盖对苹果园土壤水分及养分的影响[J]. 自然资源学报, 2010, 25(4): 547-555. |
[15] | 马群, 赵庚星. 集约农区不同土地利用方式对土壤养分状况的影响[J]. 自然资源学报, 2010, 25(11): 1834-1844. |
|